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China shock: environmental impacts in Brazil

We study whether the “China shock”, defined as China’s rapid emergence in global markets,

caused environmental impacts in Brazilian municipalities, since previous evidence points

to effects on real wages and formal sector employment over the period of 2000 to 2010.

Building on recent theoretical developments, we implement a shift-share strategy to explore

variation in economic specialization between municipalities and find that China’s direct in-

fluence on the deforestation of the Amazon and Cerrado was on average insignificant, which

is supported by the literature. On the other hand, China’s demand for commodities seemed

to increase pollution-related mortality of children in mining municipalities, a result obtained

by comparing it to mortality caused by other factors. However, we show that this is most

likely explained by a municipality’s degree of specialization in mining activities rather than

its exposure to trade with China. We conclude that the environmental effects of the China

shock on Brazilian municipalities were small, if not negligible.
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1 Introduction

Over the course of the 2000’s, China quickly rose to a central position in global markets,

effectively rearranging international trade. Particularly for Brazil, strengthening commercial

bonds with China led to further specialization in services and export-oriented activities, such as

the production of primary commodities, while manufacturing sectors faded in face of increased

competition from imports. As activities tend to cluster spatially, this “China shock” translated

into heterogeneous effects across different regions of Brazil: according to Costa et al. (2016),

labor markets in exporting locations had better outcomes on average than those in regions with

other specializations. Since this implies that Brazilian regions went through different changes

in activity levels based on their specialization, we ask whether the “China shock” also entailed

heterogeneous effects on environmental quality as an externality result following the change in

local economic activity.

Our identification strategy relies on Autor et al. (2016)’s claim that China’s engagement

in international trade can be modeled as a natural experiment. Since China went from being

a minor to the most important of Brazil’s trade partners over the period of 2000 to 2010, we

would expect regions previously specialized in goods increasingly exported to and imported

from China to face a disproportionate exposure to trade in comparison to those with other spe-

cializations. We explore this difference in “treatment status” to investigate whether trade with

China influenced environmental quality in Brazil.

Using a “shift-share” strategy to obtain measures of local exposure to trade, we find that

municipalities in the Brazilian Amazon originally specialized in the production of goods im-

ported by China experienced, on average, a smaller increase in deforested area than those with

other economic specializations: an increase of $1,000 in exports per worker is associated with

an average reduction of 0.063 percentage points in the share of a municipality’s area that is

deforested between 2000 and 2010. Considering that, according to our metric, deforestation

increased 4.15 percentage points on average1, our estimate suggests that exporting locations

have deforested relatively less than non-exporting ones. This difference between exposed and

unexposed municipalities turns out to be mostly driven by the mining sector, but vanishes once

we control for the share of a municipality’s area protected by conservation units and indigenous

territories. Our results seem to align with previous evidence presented by López and Galinato

(2005) and Faria and Almeida (2016) for the drivers of deforestation of the Amazon rainforest:

the impact of trade tends to be small and outclassed by other factors, such as the existence of

conservation units and disputes over property rights. Regarding deforestation of the Cerrado

biome, our estimates suggest that the “China shock” did not entail any differences between ex-

posed and unexposed municipalities. This is most likely explained by the fact that the Cerrado

1An average weighted by the municipality’s area in km2.
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savanna was already considerably devastated as of 2000, the baseline year of our study, leaving

little room for variation to be produced by the shocks.

We also explore changes in mortality rates as an attempt to study environmental impacts

other than deforestation. Ideally, we would investigate possible connections between the “China

shock” and concentration of pollutants, but adequate measures of environmental quality are un-

available at the level of Brazilian municipalities. Hence, we study mortality rates as a “sec-

ond best” approach: we run separate regressions for different groups of causes of death, some

closely associated with pollution. Under the assumption that there exists an environmental

channel linking the “China shock” to mortality rates, we would expect its effects to manifest on

groups of illnesses associated with poor environmental quality, while unrelated causes should

return statistically insignificant estimates.

At first glance, our results indicate that China’s “demand for exports” shock had a positive

influence on mortality at earlier ages due to pollution-related causes. For children less than

one year old, an increase of $1,000 in exports per worker made the change in mortality due to

pollution-related illnesses higher by 0.074 children per 100,000 inhabitants, on average, when

compared to municipalities relatively unaffected by the export shock. This is a relevant impact

when we take into account that, between 2000 and 2010, the nationwide average reduction in

mortality of children of this age due to pollution-related illnesses was of 0.166 per 100,000

people2. The estimated effect becomes smaller and loses significance when we increase the

age to which we restrict the population, becoming negative for ages beyond 10 years. Impor-

tantly, no such pattern appears when we run regressions for mortality due to sanitation-related

illnesses, external factors (such as violence) or all causes. These results would be compelling

indirect evidence for the effects of trade with China on the Brazilian environment were the trade

shocks not mainly driven by the mining sector. Because of this, the most likely explanation is

that the estimated impact has more to do with how specialized a municipality was in mining

activities rather than its exposure to China. Our results do not provide solid basis for arguing

that the “China shock” entailed environmental effects strong enough to translate into impacts

on mortality rates, although we are not able to completely rule them out either.

Among the contributions of this study is a first approach to the until now unexplored en-

vironmental consequences of the increased commercial interaction between Brazil and China.

Currently, the “China shock” is mostly studied by economists interested in evaluating its im-

pacts on employment and the allocation of productive resources. Concern over how these

changes may affect the emission of pollutants or the removal of natural vegetation is less of-

ten manifest. We hope, then, that our results motivate further research on this environmental

dimension of the “China shock”, which may prove useful to the development of more general

insights for the trade and environment literature.

2An average weighted by the municipal population at that age group.
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In addition, our work is one of the first empirical studies to implement a “shift-share” strat-

egy to estimate causal effects under a formal theoretical framework. Until very recently, no

standard procedure or recommended practices concerning the implementation of shift-share

variables existed. Identification was in large part a “black box”, to quote Goldsmith-Pinkham

et al. (2018), as researchers often diverged on what elements were crucial to ensure consistency

in estimation. We are benefited, however, by a new set of studies bent on establishing a for-

mal basis for the shift-share research design, which enabled us to clearly state the identification

hypotheses and shortcomings of this approach in our application.

The text goes as follows: section 2 discusses previous literature on trade and the environ-

ment, describes the “China shock” and establishes its relevance to Brazil. Section 3 presents

our empirical strategy, section 4 describes the data we use and section 5 discusses our results.

Section 6 concludes.

2 The China shock

Throughout this study, the term “China shock” refers to China’s emergence as a major actor

in trade. Over the course of a decade, China drastically expanded both its exports and imports,

as depicted by the growth rates in figure 1. The volume of goods it supplied to and absorbed

from the rest of the world is impressive: as of 2000, China’s exports accounted for 4% of the

total value exported by all countries; in 2010, this share had reached 10.5%, growing from 250

billion to 1.27 trillion 2000’s US dollars, of which more than half came from the electronics

and textiles sectors. A similar picture holds for imports, these being relatively concentrated in

electronics and ores.

Figure 1: China’s growth in trade (1996 = 100)
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Autor et al. (2016) reckon that this event provides a “rare opportunity” for empirical studies

on international trade3. Their argument hinges on the claim that China’s advance over global

markets could be modeled as a “natural experiment” to which the rest of the world was sub-

jected. Three characteristics of China’s economic growth and opening to trade are brought

forward to justify treating it as an exogenous shock:

a) it was unexpected, despite general awareness of the liberalization reforms being imple-

mented after the 1980’s;

b) it was largely driven by the reallocation of domestic production factors, as China accumu-

lated idle capacity and room for productivity gains during its period as a closed economy;

c) its growth in trade displayed an accentuated pattern: exports of manufactures and imports of

raw materials, reflecting China’s own comparative advantages.

Essentially, Autor et al. (2016) defend that external factors had little to do with China’s

emergence in trade. Rather, it was mostly its own characteristics and political decisions that

shaped its opportunities for economic growth, being fully explored once restrictions to trade

were removed. Hence, no other countries could be accounted for influencing China’s advance

over global markets, allowing us to treat it as exogenous from the perspective of the rest of the

world. Put figuratively, China rather “broke into” foreign markets than was “brought in” by

other countries.

Under this premise, Autor et al. (2013) attempted to measure the influence of China’s import

competition over the decline of manufacturing employment in the US over the period of 1990

to 2007. They explore differences in regional economic specialization to create spatial variation

in exposure to trade with China, which they achieve using a “shift-share” strategy4. To address

the concern that characteristics specific to American labor markets might have been affecting

China’s competitiveness in the US (which would violate the assumption of exogeneity of the

China shock), they instrument their exposure to trade measure with China’s imports to eight

other high-income countries. They estimate that an increase of $1,000 in imports per worker

led to an average decline in manufacturing employment of nearly 0.6 percentage points rela-

tive to unexposed locations. They calculate that import competition from China could be held

accountable for about 25% of the total reduction in manufacturing employment in the period.

Turning to environmental impacts, Bombardini and Li (2018) investigate whether China’s

export expansion had any effects on its infant mortality rates, as they suspect that the deteriora-

tion of air quality observed between 1990 and 2010 simultaneous to the increase in economic

activity was a relevant factor to explain changes in health conditions. Though they study the

3Although they argue specifically for the effects of trade on labor markets in developed countries, we believe this

claim can be generalized to other contexts.
4We should note that Autor et al. (2013) themselves never do actually refer to their empirical strategy as such.
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same event that motivates Autor et al. (2016)’s concept of “China shock”, it is obvious that the

exogeneity argument does not follow in their context: the increase in exports to the rest of the

world is very likely correlated to unobserved Chinese characteristics that can influence its envi-

ronmental quality. Bombardini and Li (2018) then use exogenous variation from tariff changes

and, similarly to papers mentioned above as well as our own study, proceed using “shift-share”

variables to scatter shock variation throughout the country. A novelty in their application is

the construction of “pollution shocks”, which they achieve by interacting the change in exports

of each sector with industry-specific pollutants emission coefficients. This enables them to ac-

count for heterogeneity in pollution intensity among the various activities Chinese regions can

specialize in; for example, while two locations may be assigned the same exposure to tariff

shocks in monetary terms, they may differ in pollution intensity, which is then captured by a

separate slope parameter in the model. Their estimates suggest that regions originally special-

ized in highly polluting exported goods experienced a higher persistence of infant mortality, a

result that is robust to a set of controls and alternative measures of local exposure to changes in

tariffs. Through a 2SLS regression, they also show that the predicted change in SO2 concentra-

tion and particulate matter was positively correlated with change in mortality: worse air quality

due to increased production of “dirty” goods seems to have led to higher persistence of child

mortality.

2.1 Brazil’s exposure to China

The China shock had world-wide reach, but Brazil could be seen as a particularly affected

country. Figure 2 illustrates how growth rates of exports and imports differed between Brazil’s

trade with China and with the average country along the 2000’s. Whereas in 2000 China ac-

counted for 2% of both Brazil’s imported and exported value, these shares in 2010 had increased

to 14% and 15% respectively, establishing it as the major purchaser of Brazilian products and

second-greatest foreign supplier to Brazilian markets, after the US.

Brazil’s trade pattern is also concentrated on few products, as shown in tables A1 and A2

of Appendix A: in 2010, 44% of all imports were of fuels, electrical and mechanical machin-

ery; among imports from China specifically, the latter two responded for 53%. As for exports,

67% of the total value shipped to China came solely from the mining industry and grain farm-

ing, mainly iron ores and soybeans. Hence, we would expect Brazilian regions specialized in

exported and imported goods to have experienced relatively high exposure to the China shock

throughout the 2000’s, which could have translated into environmental impacts intense enough

to be detected by our empirical strategy. We must be aware, however, that in 2000 Brazil’s

exports were already considerably concentrated on the set of commodities mentioned above,

implying that Brazil could have been particularly prone to trade with China. This is a potential

problem because if Brazil-specific characteristics did contribute to intensifying trade relations
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Figure 2: Brazil’s growth in trade (1996 = 100)
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with China, then the exogeneity assumption of the China shock is violated. We employ an

instrumental variables strategy to address this issue, which we discuss thoroughly in section 3.

Since we are interested in whether trade with China led to heterogeneous changes in the en-

vironment at the level of Brazilian municipalities, it is important to understand how this shock

scattered throughout the country, as our quasi-experimental approach relies on regional differ-

ences in industry specialization. Costa et al. (2016) study whether trade with China affected

local labor markets in Brazil. Similarly to Autor et al. (2013), they model local measures of

exposure to trade using “shift-share” variables and fit a first-differenced specification for the

years of 2000 and 2010, so that their coefficients are interpreted as the shock’s effect on the rate

of change of the outcome variable, rather than on the variable itself. They estimate that regions

originally specialized in goods imported by China experienced on average higher increases in

real wages and formal sector employment when compared to regions with other specializations.

These were donned the “winning” locations; the “losers”, by comparison, were those originally

specialized in goods exported by China, where growth rates of real wages were on average

smaller. Additionally, they provide evidence of “losing” regions experiencing smaller rates of

immigration, which is consistent with Haddad and Maggi (2017), whose model predicted fur-

ther specialization in export-oriented activities5. Somewhat surprisingly, though, Costa et al.

(2016) also find that these “losing” regions experienced smaller rates of emigration. They ar-

gue that, since activities tend to cluster spatially, the possibilities of gains from migration are

slimmer for individuals in locations facing China’s competition because neighboring regions,

5Haddad and Maggi (2017) use a computable general equilibrium (CGE) model to simulate the impacts of the

China shock on Brazil. Their results illustrate the importance of inter-regional trade and general equilibrium

effects, which are suggested to have acted as an “insurance” against the shock.
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which are the lowest-cost alternatives for moving, are likely facing similar difficulties.

We borrow considerably from Costa et al. (2016)’s empirical strategy, as they implement

several changes when adapting Autor et al. (2013)’s methodology to the context of Brazil. In

addition to addressing potential issues related to particular characteristics of Brazil’s regional

labor markets, they split the China shock in two: one of “demand for exports” and one of

“supply of imports”. This is a necessary change over the original application, since Brazil’s

increased imports from China were accompanied by growth in exports as well. Costa et al.

(2016) also introduce a different approach to instrumenting the China shocks6, which we find

to be an improvement over the original and thus replicate in our study.

2.2 This study

Costa et al. (2016)’s results indicate that the China shock led to relative increases in the

average wage of regions that in 2000 were specialized in producing goods that Brazil would

export to China in the following years. Simultaneously, Haddad and Maggi (2017)’s model

shows these regions receiving a higher influx of workers. Since an expansion of labor supply

would coeteris paribus drive wages down, the estimated increase in wages must have resulted

from a larger upward shift of the local demand curve for labor than the downwards one of its

supply. Considering Brazil’s main exports to China are products of capital-intensive sectors,

such as mining and commodity-oriented agriculture, the shift in labor demand was likely due to

an increase in output by firms, rather than substitution of capital for labor. We then ask: could

these changes in activity levels, which differ between regions depending on local specialization,

have led to heterogeneous impacts on environmental quality?

We first look at deforestation. An increase in activity levels may have led to higher demand

for inputs and services that compete with forest cover, such as land for farming or the extraction

of timber. We investigate possible effects of the China shock on changes in deforested area of

municipalities in the Cerrado and Amazon biomes. Particularly for the latter, previous studies

attempted to investigate the impacts of trade on deforestation. López and Galinato (2005) found

that trade openness could either increase or decrease deforestation rates depending on whether

the country has comparative advantages in producing “forest-competing” crops, those that ex-

pand by replacing natural vegetation cover. They compared Brazil, Indonesia, Malaysia and

the Philippines, all of which have tropical forests, from 1980 through 1999 and find a relatively

small net impact of trade. For Brazil specifically, which started adopting a more liberal trade

agenda in the beginning of the 1990’s, they found a negative effect of trade openness on defor-

estation of the Amazon. They argue that trade reduced incentives supporting the expansion of

“forest-competing” crops, since, aside from the cultivation of soybeans, agricultural production

6A concern similar to Autor et al. (2013)’s arises in their study, as they worry that trade flows between China and

Brazil might have been partially influenced by factors specific to Brazil.
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in the Amazon consisted mainly of goods that were not traded or were substitutes to imports.

Hence, opening to foreign markets led productive factors out of the forest area towards regions

where export-oriented sectors were located; in other words, trade reduced deforestation through

a composition effect. However, they consider this to be a small impact, arguing that domestic

policies such as tax and credit incentives were much more relevant to explain changes in forest

cover. Faria and Almeida (2016)’s results go along with this conclusion: although they estimate

a positive influence of openness to trade on deforestation, their coefficients are quite sensible

to changes in model specification, with point estimates varying greatly in size and significance.

The effects on deforestation of conservation units and existence of disputes over land property

rights are shown to be significant and exceed those of trade in all of their specifications, sug-

gesting that trade may indeed be of secondary importance to explain forest loss in the Amazon.

Using the full sample of municipalities, we proceed to study changes in the emissions of

pollutants, which economic theory predicts to be linked to activity levels through production

externalities. The ideal inquiry would look at local levels of pollution to investigate whether

an environmental impact exists, but it is unfortunately unachievable due to the poor quality of

Brazil’s data on air and water pollution at the level of municipalities7. We are also unable to

include in our model different slope parameters for shocks according to their pollution intensity,

as in Bombardini and Li (2018), since no reliable source produces this information for all the

activities we consider in our study. Hence, we settle for a “second best” approach exploring

changes in mortality: on the assumption that there exists an environmental channel linking

the China shock to mortality rates, we expect effects to manifest on illnesses most associated

with poor environmental quality, while unrelated causes should return statistically insignificant

estimates.

3 Empirical strategy

This study deals mainly with the estimation of reduced form equations, which generally

follow:

∆yi = β1 ·XDi +β2 · ISi +WWW ′iγγγ +∆εi, (1)

where ∆yi = yi,2010− yi,2000 is the change in an outcome of municipality i, XDi and ISi are

measures of i’s exposure to China’s “demand for exports” and “supply of imports” shocks, re-

spectively, ∆εi is the change in unobserved time-varying determinants of ∆yi and WWW i is a vector

of controls. In addition to an intercept, WWW i may include lags of ∆yi and relevant socioeconomic

7The National Water Agency of Brazil (ANA) states that the currently available data on water quality is spatially

and temporally inconsistent, as no standard procedures for collection of measurements were ever implemented.

In 2018, ANA has launched a new agenda (details in http://pnqa.ana.gov.br/pnqa.aspx) for addressing these issues

and start producing coherent information to be used in research. For a similar diagnosis on the collection of air

quality data, see IEMA (2014).

http://pnqa.ana.gov.br/pnqa.aspx
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characteristics, most of which we opt to hold fixed at baseline levels to avoid potential endo-

geneity issues: since trade shocks might influence regional characteristics other than environ-

mental quality, the actual change of any covariate could correlate to unobserved time-varying

determinants of outcome ∆yi.

Equation (1) is estimated in first-differences due to the “shift-share” structure of the trade

exposure variables XD and IS, which we detail below. Consequently, municipal fixed effects

are accounted for and any covariates we hold constant are interacted with year dummies to keep

them from vanishing in the first-differences transformation. These are to be interpreted, then,

as capturing trends that regions with similar values of each characteristic would be expected to

follow, just as the intercept captures a general trend effect associated with the passing of time.

3.1 Measuring exposure to trade

Following Autor et al. (2013) and Costa et al. (2016), we employ a weighting strategy to

build local measures of exposure to trade with China from country-level data. This is necessary

because actual local exports and imports information is not provided by municipalities. Hence,

we define change in exposure of municipality i to trade with China as:

XDi = ∑
j

si, j ·gX
BC, j

ISi = ∑
j

si, j ·gM
BC, j,

(2)

where si, j is the share of region i’s workers employed in industry j and gX
BC, j and gM

BC, j are

the change in exported (from Brazil to China) and imported value (by Brazil from China) of

goods produced in industry j, respectively. With XD and IS defined as such, the empirical

model in (1) becomes a “shift-share” research design, because our key variables are interactions

of a set of shocks (“shifters”) with a set of weights (“shares”) that introduce cross-sectional

variation in exposure8. Hanna and Oliva (2015) and Christian and Barrett (2017) interpret shift-

share designs as continuous differences-in-differences frameworks where treatment status is

not a binary assignment, but rather a gradient across the cross-section units. In this setting, the

“identifying variation” comes from comparing regions with high and low exposure to trade with

China before and after the shocks. Thus, failure to control for relevant factors determining local

environment-related outcomes could be understood as a violation of the well-known “parallel

trends” assumption. In our study, “parallel trends” would require regions differing only in the

degree of exposure to trade to have gone through similar changes in environmental outcomes

had the China shocks not occurred.

8In the canonical setting presented by Adão et al. (2018), the set of weights si, j adds up to unity for each i. This is

not the case in our study, since j indexes traded sectors only. The implications of this issue are minor: it slightly

alters the manner we specify our identification hypotheses, as we discuss in Appendix B.
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How do XD and IS capture a municipality’s sensitivity to China’s demand and supply

shocks? For an industry j, consider the fraction of trade flow F assigned to location i, over

which we aggregate across sectors to build (2):

si, j ·gF
BC, j =

Li, j

Li
·

∆FBC, j

LB, j︸ ︷︷ ︸
Shift-share

=

(
Li, j

LB, j

)
·

∆FBC, j

Li︸ ︷︷ ︸
Autor et al. (2013)

, (3)

where ∆FBC, j = FBC, j,2010−FBC, j,2000 is the change in value traded of j between Brazil and

China (where F can denote exports (X) or imports (M)), Li, j is the number of region i’s workers

employed in industry j, LB, j is the number of Brazilian workers employed in j and Li is the total

number of workers located in i. Hence, if ∆XBC, j and ∆MBC, j are given in dollars, XDi and ISi

measure exposure in dollars per worker.

The first equality follows the canonical shift-share structure as presented in Adão et al.

(2018) and Borusyak et al. (2018): Li, j/Li are the “shares” si, j and ∆FBC, j are the “shifters”

gF
BC, j/LB, j, with LB, j serving as a scaling factor. However, Autor et al. (2013)’s interpreta-

tion of the variables in (2) implies a different arrangement of the terms in (3), as given by

the second equality. Essentially, it exchanges LB, j for Li, meaning weights would be given by

the term in parentheses, interpreted as i’s importance for Brazil in the domestic production of

goods from industry j. The scale factor would then be i’s total number of workers, which is

included so that regions with different levels of activity can be compared. However, scaling

can cause undesirable distortions: since we are interested in the environmental impact of eco-

nomic activities, dividing by Li may understate this effect in regions that have a large number of

workers across many industries. This might happen because, for a given Li, j, higher Li reduces

si, j · gF
BC, j even though pollution emissions by j would be no smaller than if we observed the

same amount of employment Li, j in a region h that has less workers in total (that is, Li, j = Lh, j

and Li > Lh =⇒ si, j · gF
BC, j < sh, j · gF

BC, j). We try to account for this problem by choosing

appropriate regression weights.

Throughout this text, we stick to the definition given by the first equality in (3), which is

supported by a recent set of studies that seek to formalize the theory behind the shift-share

structure. Note, however, that the comment we made above based on Autor et al. (2013)’s

interpretation holds regardless since, even though shares actually refer to labor in regions (Li)

instead of labor in industries (LB, j), both expressions are mathematically the same.

For most of the following discussion, we ignore the existence of the scale factor LB, j, mainly

to save in notation. This is a harmless simplification, because whatever issues it may cause come

through the same channels as the labor shares si, j, since LB, j =∑i Li, j. Also, the theoretical shift-

share framework, as laid out by Borusyak et al. (2018), does not consider a scale factor, so by

choosing to omit it for now we keep our exposition closer to the canon9.

9Refer to Appendix B for more details on this simplification. Alternatively, one could define s̃i, j ≡ si, j/Li and the
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The weights in (3) are constructed from employment levels observed in the baseline year,

2000. This choice is actually important, because we rely on the exogeneity of China shocks,

Cov(∆FBC, j,∆εi|WWW i) = 0, to identify β1 and β2. To see why, notice that Costa et al. (2016)’s re-

sults suggest that employment levels themselves were partially determined by trade with China

throughout the 2000’s. Also, recall that we are working under the hypothesis that the envi-

ronmental quality of a municipality reflects to some degree the types and scale of economic

activities it performs, for which we proxy with how labor is allocated in it. Therefore, if a

municipality’s economic specialization is correlated with unobserved determinants of environ-

mental quality, using labor shares from 2010 (or any other year in between) would bias our

estimates, since then Cov(si, j,τ ,∆εi|WWW i) 6= 0 and Cov(si, j,τ ,∆FBC, j|WWW i) 6= 0, which would imply

Cov(∆FBC, j,∆εi|WWW i) 6= 0, where τ is any year after 2000.

To illustrate this argument, suppose that a region started specializing in the production of

some good that China imports from Brazil after intensification of trade between the two coun-

tries had begun. This would likely imply that Cov(si, j,τ ,∆FBC, j|WWW i) 6= 0, since it is reasonable

to expect agents would want to benefit from improved possibilities of gains from trade, hence

shifting their production resources to the exporting activity. If we assign to this region a level of

exposure based on si, j,τ , can we be sure that the environmental effect we capture is entirely due

to China’s influence? Probably not, since the change in specialization could have been facili-

tated by laxness in local environmental regulation, meaning we would be overstating China’s

effect by mixing it with the region’s own relative disregard for its environmental quality. There-

fore, we would be better off using shares si, j that are not influenced by trade shocks, as they

would more likely be free from endogenous responses of region-specific factors that distort the

true impact.

One might worry, though, that not even using baseline shares we would be able to support

the assumption that Cov(si, j,∆FBC, j|WWW i) = 0. For example, regions with large initial concentra-

tion of workers in industry j might benefit from a productivity shock concomitant with growth

of trade between Brazil and China. In this case, we could have a fraction of the increase in

exports of j actually being due to these products being “pushed”, rather than “pulled”, from

Brazil to China. Alternatively, some regulation implemented in between 2000 and 2010 might

render domestic production of a good impracticable, meaning that imports of said good would

rise due to these being “pulled” by Brazil instead of “pushed” by China, regardless of the year

labor shares are evaluated in. In such cases, the exposure to trade measures in (2) would also

be violating Cov(∆FBC, j,∆εi|WWW i) = 0, leaving us incapable of recovering our parameters of in-

terest. Therefore, we need to ensure that the variation coming from changes in value traded

between Brazil and China throughout the 2000’s does not carry any influence from characteris-

following arguments would still apply, since both si, j and Li are variables specific to Brazil. We do not do this

because it would then be incorrect to refer to s̃i, j as “shares”.
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tics specific to Brazilian municipalities.

3.1.1 A proper China shock

Though we argued for interpreting China’s increasing relevance in global trade as a “natural

experiment” from the perspective of the rest of the world, it is unlikely that growth in trade

between Brazil and China went completely unaffected by events and characteristics specific to

Brazil. Consider the following decomposition of an industry j’s growth in exports from China

to Brazil10, based on Goldsmith-Pinkham et al. (2018):

∆MBC, j = ∆MB, j +∆XC, j +∆M̃BC, j. (4)

We can write it as the sum of changes in Brazilian imports due to factors specific to industry j in

Brazil (∆MB, j), changes in Chinese exports due to factors specific to industry j in China (∆XC, j),

and a term accounting for eventual idiosyncrasies that may exist in the relations between China

and Brazil when trading products of j (∆M̃BC, j). If we wish to study China’s impact on Brazil’s

environmental quality, it is necessary we remove the variation that is not driven solely by China-

specific factors from our exposure to trade measures. Ideally, then, we would have our variables

in (2) constructed with ∆XC, j and ∆MC, j instead of ∆MBC, j and ∆XBC, j.

To approximate these unobserved China-specific components of growth in trade, we follow

Costa et al. (2016) and construct instrumental variables that also use a shift-share structure, a

strategy sometimes referred to in the literature as a “Bartik” IV approach. For every industry j,

we run regressions of the form:

∆M̄r, j

M̄r, j,2000
= α j +δ

M
j ·1{r=China}+νr, j

∆X̄r, j

X̄r, j,2000
= γ j +δ

X
j ·1{r=China}+µr, j,

(5)

where 1{r=China} takes value 1 when country r is China and zero otherwise, ∆M̄r, j = M̄r, j,2010−
M̄r, j,2000 is the change in value of j imported by r from the rest of the world excluding Brazil

and, analogously, ∆X̄r, j is the change in value of j exported by country r to the rest of the

world except Brazil. Regressions for imports and exports are weighted, respectively, by country

r’s imported and exported volume of industry j’s goods in 2000 to mitigate the influence of

growth rates from countries that initially had small relevance in these markets. Estimated δ̂ M
j

and δ̂ X
j inform China’s deviations from the global average in import and export growth of j.

Since we are considering a “world without Brazil”, these coefficients do not carry influence

from Brazil-specific factors. Additionally, as Costa et al. (2016) point out, they are not affected

by world-encompassing events such as commodity price shocks or technological innovations

10An analogous argument follows for growth in exports from Brazil to China.
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because these are captured by industry fixed effects α̂ j and γ̂ j. Hence, δ̂ M
j and δ̂ X

j plausibly

inform how much of China’s trade performance can be accounted to its own intrinsic factors

and are thus appropriate to model a China shock11. In fact, we do so by interacting these

coefficients with the initial trade levels between Brazil and China:

∆M̂BC, j = δ̂
X
j ·MBC, j,2000

∆X̂BC, j = δ̂
M
j ·XBC, j,2000.

(6)

The predicted imports and exports above are the changes in traded value of goods from industry

j we would expect to observe were these trade flows to be completely driven by Chinese char-

acteristics, meaning they are proxies for ∆XC, j and ∆MC, j in (4), respectively. The instruments

for our exposure variables are then simply obtained by replacing the actual trade flows in (2),

donning them the shift-share structure:

ivXDi = ∑
j

si, j ·∆X̂BC, j

ivISi = ∑
j

si, j ·∆M̂BC, j.
(7)

Figure 3 highlights the municipalities in the tenth decile of exposure to the China shocks.

The two maps at the top row show the exposure to trade measures calculated with the actual

changes in imports and exports between Brazil and China, while the bottom two maps present

the instruments given by (7). The pattern of most affected municipalities is quite similar be-

tween “actual” and instrument shocks, which could suggest that the observed changed in trade

flows was already largely due to China’s pressure, with little influence of Brazil-specific charac-

teristics. Indeed, this seems to be true for exports, as the observed shock XD and its instrument

ivXD are highly correlated (97.2%). The same cannot be said about imports, however, since the

correlation coefficient for IS and ivIS is 33.4%, implying that domestic factors explain a large

part of Brazil’s change in imported value.

3.1.2 Identification with shift-share instruments

The IV strategy above lends credibility to the assumption that Cov(si, j,∆F̂BC, j|WWW i) = 0 and,

thus, Cov(∆F̂BC, j,∆εi|WWW i) = 0, where ∆F̂BC, j is the predicted change in trade flow F obtained

through (6). Nevertheless, if local specialization in 2000 and environmental quality of a region

i are correlated with some unobserved time-varying confounder, one might worry that our ex-

posure to trade will be endogenous in spite of whatever claims we make about the exogeneity

of the China shocks. That is, there might be concern that identification of β1 and β2 also de-

pends on the exogeneity of labor shares since, after all, they are the weights used to generate

the shift-share variables, as shown in equation (2).

11One could interpret Autor et al. (2016)’s argument for using the China shocks in quasi-experimental designs as

a claim that δ̂ M
j and δ̂ X

j should be statistically different from zero for a significant number of industries.
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Figure 3: Municipalities in the 10th decile of exposure to export and import shocks

Baum-Snow and Ferreira (2015) and Bombardini and Li (2018) explicitly state that consis-

tent shift-share estimates require labor shares used as weights to be exogenous. However, the

requirement that Cov(si, j,∆εi|WWW i) = 0 should hold is a difficult assumption to support when si, j

are taken from the same year the quasi-experiment starts. In our application, we might have

Cov(si, j,2000,εi,2000|WWW i) 6= 0 due to, for example, differences in local legislation that favor some

activities over others, which consequently also affects environmental quality. To address this

problem, Autor et al. (2013) opted for using labor shares lagged by a decade, relying on the as-

sumption that ∆εi are not autocorrelated. Though easier to argue for the exogeneity of si, j in this

case and, thus, imbuing estimates with a greater degree of credibility, it does so on the cost of

precision, since the shift-share variable would be more prone to incorrectly assign fractions of

the shock variation to regions whose profile of economic activities changed significantly since

the year lagged shares refer to.

Fortunately, recent developments in the shift-share literature show that we can use baseline-
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year shares in the exposure to trade variables and still be able to estimate our model consistently.

Borusyak et al. (2018) argue that identification in the shift-share framework relies on exogeneity

of the “shift” element (that is, the shocks) rather than the weights used to allocate it throughout

regions. They establish a numerical equivalence to the shift-share IV estimator and arrive at

two identification hypotheses, neither of which impose restrictions on shares si, j. This is conve-

nient because our predicted Brazil-China trade flows in (6) are much more likely to satisfy the

orthogonality condition than baseline-year labor shares si, j. We present a detailed discussion on

this topic, as well as the identification hypotheses, in Appendix B.

3.2 Interpreting the estimates

Supposing that the necessary conditions for consistent estimation of our model with shift-

share variables and instruments are satisfied, we now discuss how to interpret our estimates.

Notice in figure 3 how specially the export shocks is considerably dispersed throughout Brazil’s

territory, which is vastly diverse in physical and socioeconomic characteristics. A natural con-

cern then arises over the adequacy of modeling the environmental impacts of the China shocks

as homogeneous across municipalities, which is how they are treated in equation (1).

Based on the canonical model presented in equation (B1) of Appendix B, Adão et al. (2018)

explore this issue in a setting where the effects of shocks can differ across locations and indus-

tries; that is, the “true” impacts, given by βi, j, are allowed to vary along i and j. In this case,

they show that shift-share estimates correspond to a weighted average of the βi, j, with weights

increasing not only in local labor shares si, j, but also in the variance of industry-specific shocks

g j
12. Therefore, our estimates β̂1 and β̂2 will more accurately represent the impacts in munici-

palities that had relatively high shares of workers employed in traded activities in 2000.

Besides this issue, we must also address whether our estimates provide convincing evidence

for environmental effects of the China shocks. Evidently, nothing about the shift-share variables

in (2) pertains to environmental quality per se; they are simply measures of a regions’ exposure

to trade, given in dollars per worker. In our regressions regarding mortality rates, for example,

the estimates may reflect changes in environmental quality, but are also likely to capture effects

related to changes in income and employment. Shocks to available income may lead individuals

to increase or decrease private expenditures in health care and prevention. Likewise, a change in

local labor market attractiveness may induce migration, leading to a change in the composition

of workers. In both cases, health quality could change in response to the China shocks even if

12Adão et al. (2018) study the statistical properties of the shift-share estimator by repeatedly drawing shocks

g j. Therefore, we cannot decompose β̂ so as to find every industry-region specific parameter βi, j because we

observe only the actual values of each shock; i. e., we cannot know the variance of g j. Under the share exogeneity

assumption, though, one could decompose β̂ in an average of industry-specific parameters β j associated with

“Rotemberg weights”, as demonstrated by Goldsmith-Pinkham et al. (2018).
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local environmental quality went unaltered.

Bombardini and Li (2018) face the same problem in their study, which they try to account for

by introducing a shift-share variable, in addition to one similar to (2), that accounts for industry-

specific pollution intensity (so that larger weights are assigned to “dirtier” sectors). The idea is

to separate income channels from environmental ones by comparing two regions with similar

values in the monetary dimension of the shock, as we mentioned in section 2. However, this

will be the case only if the more pollution-intensive industries are not also the ones who better

remunerate labor, as otherwise weighting industries by pollution intensity would be similar to

weighting them by wage rates. Despite this drawback, it is nonetheless a promising attempt

at addressing confounding income effects. Unfortunately, we cannot replicate their approach

since the emission coefficients they use to quantify pollution intensity are obtained from the US

Environmental Protection Agency (EPA), which reports them only for manufacturing activities.

No equivalent measures exist for non-manufacturing sectors, notably agriculture, which is of

major importance to Brazil.

It is also problematic that we define China’s trade shocks as changes over a period of 10

years. One could argue that an environmental impact would be more easily perceived without

any influence of confounders as soon as local activity reacted to the shocks. This is because,

for example, the response of the rest of the economy to the shocks could be delayed by market

imperfections and, also, inhabitants might not adopt defensive behavior immediately, thus not

“clouding” effects on mortality outcomes. It is very unlikely, though, that this brief coeteris

paribus window for evaluating environmental changes would last up to a decade. This goes

along with Haddad and Maggi (2017)’s main criticism of quasi-experimental designs based

on the China shocks: because the economy has complex linkages through sectors, space and

time, general equilibrium effects are bound to follow a disturbance to any specific industry, with

various adjustments occurring simultaneously, going in different directions at different paces.

Without a CGE approach or a specific estimable equation derived from a structural model, it is

hard to disentangle these effects through regression analysis.

In our application, the interference of general equilibrium effects translates into an issue of

“measurement error” in the exposure to trade measures, which leads to attenuation bias. This is

because such effects incite responses to China shocks from regions not expected to do so. For

example, locations not predicted to be exposed to shocks might experience changes in activity

levels due to being specialized in inputs used in activities that are directly affected. Also, the

expansion of a sector may advance into regions that initially had few or no workers employed in

it. On the other hand, general equilibrium effects can lead to shifts in activity levels in regions

predicted to be but not directly affected by China’s demand and supply of goods. For instance,

a region that does not purchase in foreign markets a good which it also produces locally, might

be affected nonetheless through market share loss in other regions that do import that good.



18

We try to minimize the noise introduced by general equilibrium effects with the controls we

include in WWW i. Recall that our estimation strategy can be seen as a continuous differences-

in-differences design: if regions with common pre-trends are expected to experience similar

general equilibrium effects, then we might reduce attenuation bias by choosing a relevant set of

observable factors to control for.

3.3 Inference

Economic activity is very often spatially correlated, so it seems reasonable to calculate

standard errors robust to heteroskedasticity across geographical clusters instead of the standard

Huber-White estimates. In our application, we cluster municipalities in “microregions”, state

subdivisions conceived to group contiguous municipalities that not only share similarities in

economic specialization but are also complementary to each other in terms of production chains

and distribution of goods (BRASIL, 1989), therefore prone to be similarly influenced by the

China shocks.

Adão et al. (2018), however, are concerned that the shift-share structure of the exposure vari-

ables can lead a location i to be correlated with another location h through similarity in industry

specialization. They show that the regression residuals of a shift-share model can themselves

have the shift-share structure, so that similar allocation of labor across activities between two

regions cause them to have similar residuals. Hence, we might have Cov(∆εi,∆εh) 6= 0 regard-

less of geographical proximity, which can lead to deceptively small standard error estimates

and, thus, overrejection of statistical insignificance of the estimated coefficients. This issue is

particularly perverse because, given the spatial nature of problems that shift-share modeling is

usually adopted for, researchers are inclined to trust the common practice of computing stan-

dard errors in geographic clusters to deal with correlated residuals. However, if two regions

similar in industry specialization are geographically far apart, there can be residual correlation

unaccounted for.

To address this issue, Adão et al. (2018) propose a new estimator for standard errors in

shift-share models, which we present in Appendix C. When replicating Autor et al. (2013)’s

study, they find that their confidence intervals were considerably broader than those constructed

with traditional Huber-White or geographical cluster-robust standard errors. Since this suggests

that residual correlation due to similarities in industry specialization can present non-negligible

problems to inference, we calculate their standard errors based on our main results and report

them alongside the previously mentioned microregion-robust standard errors in Appendix C.
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4 Data

All monetary variables used in this study were converted to 2000’s American dollars us-

ing the US’s implicit GDP deflator and the year-average dollar to Brazil’s reais exchange rate.

The geographical level of our analysis is municipalities, therefore departing from Costa et al.

(2016), who use microregions. This is because we are not interested in regional labor markets

outcomes per se, which would indeed be more fittingly measured in microregions rather than

in municipalities. For our purposes, the use of labor data is merely instrumental: we use it to

approximate the group of activities taking place in each municipality and the scale at which they

are performed. Since we are interested in the impact of economic activities on the environment

around it, a finer unit of observation might be desirable as we expect such effects to be relatively

concentrated on the surroundings of where the activity is effectively performed13. Because new

municipalities were created over the course of the period we are studying, we had to group to-

gether those that in 2000 originated new ones in 2010, leaving us with 5500 municipalities. We

further aggregate them when we include a lag of the outcome variable among the controls, as

municipalities also increased in number along the 1990’s. In these specifications, we have 4264

municipalities.

In our regressions, we generally include mesoregion-year dummies as controls, therefore

restricting the comparison of municipalities to those belonging to the same mesoregion. Given

that “microregions” are contained in “mesoregions”14, we could instead include microregion-

year dummies, which should be more effective in conveying the argument that we are comparing

municipalities that satisfy the condition of parallel pre-trends. We do not do this because a

significant amount of microregions contain too few municipalities, an issue partially due to the

groupings mentioned above. For example, in the Legal Amazon, 46 of the 100 microregions

have less than 6 municipalities, while this is the case for only 1 of the 29 mesoregions. A similar

picture holds for the full sample: 40% of the microregions contain less than 6 municipalities,

whereas this is a problem for less than 7% of the mesoregions. Since we are working with

only two years of data, we opt for not using microregion-year dummies to avoid excessively

restricting sample variation. As we mentioned earlier, however, we do use microregions when

calculating cluster-robust standard errors, whose estimates benefit from a higher number of

clusters.

13As one may expect, this is not necessarily the case. For example, Lipscomb and Mobarak (2017) show evidence

that municipalities in Brazil tend to let pollution in rivers accumulate as it moves along their jurisdiction, leaving

the burden of cleaning it to its downstream neighbor.
14“Mesoregions” group contiguous microregions within a state using analogous criteria to those followed when

grouping municipalities in microregions (BRASIL, 1989). Note, though, that neither of these groupings is

associated with an administrative level, whereas municipalities and states are.
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4.1 Employment and socioeconomic characteristics

Our main source for information at the level of municipalities is the 2000’s Population Cen-

sus, conducted by the Brazilian Institute of Geography and Statistics (IBGE). Specifically, we

use microdata from the households sampled to answer a detailed questionnaire, which contem-

plates several individual and household aspects. We observe whether a person works, in which

municipality, formally or informally and in what sector, according to the National Classification

of Economic Activities for Household Surveys (CNAEdom), which contains over 200 activities

spanning from services to agricultural and manufacturing sectors. Besides employment infor-

mation, we also use the 2000’s Census microdata for per capita income and the share of each

municipality’s households that are in urban areas, have access to a water supply system and are

contemplated by sewerage services.

We use the 2010’s Population Census by IBGE to compute the share of each municipality’s

population aged 10 years or more that has not immigrated from another municipality in the last

decade. This is used in an attempt to account for possible effects of internal migration: we

restrict the sample to municipalities where the majority of residents fit this criterion, expect-

ing it to help assess the influence of compositional changes in population on municipal health

outcomes.

4.2 International trade

We use the BACI database, maintained by the Center of Prospective Studies and Interna-

tional Information (CEPII), for data on global trade. It is based on the United Nations Com-

modity Trade Statistics Database (COMTRADE), which as of now compiles data from over 170

countries15. BACI presents traded value and weight of commodities classified in accordance to

the Harmonized System codes (detailed up to 6 digits). We use this information not only to

describe trade between Brazil and China, but also for all countries that reported trade flows in

2000 and 2010, since our IV strategy requires us to run regressions for every country except

Brazil16. We crosswalk from trade codes to CNAEdom using the correspondence table Costa

15For some tables, we report data from ComexStat, which is Brazil’s public query system for trade statistics. Both

COMTRADE and ComexStat present the same information, but the latter provides it with greater detail, such as

trade by state.
16The great advantage of using CEPII’s database over COMTRADE itself is that, despite efforts for standardiza-

tion, COMTRADE’s information can be problematic because countries themselves report trade records. For

instance, since there is no unified policy for transportation and taxing of foreign goods, it is not clear how much

of a reported traded value actually refers to the commodity itself and not to freight costs or import taxes. As

a result, one transaction can present a large discrepancy between the value a country allegedly exports and the

other allegedly imports. CEPII BACI addresses these issues so as to provide one consistent data set in which

tracking down a trade flow from the perspective of the importer and the exporter yields the same results. Details
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et al. (2016) provide along with the online version of their paper.

4.3 Deforestation of the Amazon rainforest and the Cerrado savanna

The National Institute of Spatial Research (INPE) conducts the “PRODES” projects, which

monitor the state of deforestation in the Amazon rainforest and the Cerrado savanna using satel-

lite images. Figure 4 displays the original vegetation cover of both biomes. We use data made

publicly available through tables and shapefiles to build our deforestation outcomes at the mu-

nicipality level. PRODES monitors deforestation of the “shallow cut” kind; that is, complete

removal of forest cover in a short period of time, spotted by comparing satellite images of the

forest from consecutive years. This means that regions with slowly vanishing vegetation are

not accounted for when calculating yearly increases in deforested area. Also, areas with com-

promised visibility in satellite images due to clouds, as well as those mixed with vegetation

from other biomes and hydrography, are reported separately and likewise not considered when

computing deforestation.

“PRODES Amazônia”, designed to keep track of deforestation in the Brazilian portion of

the rainforest (referred to as the “Legal Amazon” area), was implemented in 1988 and has been

running uninterruptedly ever since. The deforestation rate calculated from its data is an im-

portant indicator of effectivity in detaining anthropic devastation of the forest, and was used

as the basis for Brazil’s commitments made in 2015’s UN Climate Change Conference. How-

ever, methodological changes adopted throughout the years make it difficult to conceal recent

with historic data, reason why INPE only publicizes deforestation data from 2000 onwards.

Conveniently, though, it is already mapped across municipalities.

“PRODES Cerrado” is a more recent initiative that shares the same purpose of its counterpart

for the Amazon. It uses data from previous monitoring programs established through interna-

tional agreements and is currently funded by the World Bank. INPE recently made available a

shapefile for the evolution of Cerrado devastation starting in 2000. These are not mapped across

municipalities, however, meaning we had to fit it to an administrative borders’ grid provided by

IBGE to calculate the change in deforested area by municipality.

Figure 5 displays the state of deforestation of the Amazon rainforest and Cerrado savanna

in 2000. Also depicted are municipalities which had rural establishments cultivating soybeans

as of 2006, according to the Census of Agriculture, conducted by IBGE. Notice how many of

these municipalities are in the Cerrado area, especially in regions already largely devastated in

Mato Grosso (MT), Goiás (GO) and Mato Grosso do Sul (MS). Since the most significant part

of the production of soybeans takes place in these states, as shown in table A3 in Appendix A,

the maps suggest that soybean farming expanded where there was already little natural vege-

at http://www.cepii.fr/PDF_PUB/wp/2010/wp2010-23.pdf.

http://www.cepii.fr/PDF_PUB/wp/2010/wp2010-23.pdf
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Figure 4: Natural occurrence of Amazon and Cerrado biomes in Brazil

Source: IBGE.

tation remaining. Without much left to deforest, these municipalities might have experienced

relatively small changes in deforested area over the period we are studying. However, there are

also municipalities with soybean farming in Brazil’s North and North-East regions, in the states

of Bahia (BA), Piauí (PI), Maranhão (MA) and Tocantins (TO), which appear to be relatively

less devastated in 2000. These regions may then present enough variation in vegetation cover

to allow us identify potential effects of trade with China on deforestation.

4.4 Mortality

We build mortality outcomes using data from DataSUS, an online databank maintained by

Brazil’s Unified Healthcare System (SUS). Every entry informs the municipality of occurrence,

municipality of residence, age, gender, skin color and cause of death according to the 10th

International Classification of Diseases (ICD-10), among other characteristics. We are then

able to aggregate these data to the municipality level by age group and causes, allowing us to

study whether effects of the China shocks on mortality differ for varying levels of vulnerability

to pollution-related illnesses. We have data spanning from 1996 to 2010, meaning we are able to

include a “short lag” (from 1996 to 2000) of the outcome variable in our model to help control

for he possible influence of pre-existing trends in mortality.
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Figure 5: “Shallow cut” deforestation in the legal Amazon and Cerrado area

Sources: INPE and IBGE.

5 Results
5.1 Effects on deforestation

Table 1 describes the behavior of deforestation in the Amazon and Cerrado regions, mea-

sured as the change in the share of a municipality’s area that was deforested between 2000 and

2010. While the average municipality in the Cerrado deforested more than its counterpart in the

Amazon, the empirical distribution of deforestation in the latter has heavier tails and some clear

outliers. As a robustness check, we dropped the 70 municipalities with change in deforested

area higher than 20 percentage points and the results were nearly unaltered.

We also report statistics for municipalities with high exposure to the shocks, which we por-

trayed earlier in figure 3. Notice how average increases of deforestation in municipalities most

affected by China were smaller than the general rates for both the Cerrado and Amazon regions,

suggesting that trade-oriented municipalities were less aggressive towards the environment. On

the other hand, this could be reflecting the fact that those municipalities were, on average, al-

ready more deforested in 2000, especially in the Cerrado.

Our estimates for the impacts of the China shocks on deforestation of the Amazon are pre-

sented in table 2. Coefficients are to be read as the expected change in percentage points fol-

lowing an increase of US$1,000 per worker in a municipality’s exposure to trade. Column

1 presents slope coefficients for an OLS fit with no controls, while the others report 2SLS



24

Table 1: Descriptive statistics - difference in deforested area as share of municipality

Mean Std. dev. Baseline 1st q. Median 3rd q. Max

Amazon 4.15 7.41 10.5 .163 1.16 5.29 97.9

High IS 4.06 6.16 11.5 .135 .475 6.13 41

High XD 3.53 5.5 10.6 .289 .744 6.13 46.9

Cerrado 7.16 5.97 25.7 2.27 6.02 11 37.3

High IS 6.85 6.68 48.8 1.28 4.32 12.7 25.2

High XD 6.87 5.26 34.9 2.15 5.88 10.9 21.6

Statistics weighted by the municipality’s area in km2. “High XD” and “high IS” refer to municipalities in the

10th decile of exposure to the China shocks.

estimates using (7) as instruments for our exposure to trade measures. All regressions are

weighted by the municipality’s area in km2. The Kleibergen-Paap (KP) statistics refer to a

heteroskedasticity-robust test of weak correlation between the instruments and actual measures

of exposure to trade.

While the “supply of imports” shock IS did not cause any differences between exposed

and unexposed municipalities, the “demand for exports” shock XD is associated with a signif-

icant negative effect in the first four specifications. Notice how the coefficient barely changes

from column 1 to 2, a consequence of the very high correlation between XD and its instru-

ment mentioned in section 3. In column 3, controlling for mesoregional trends and municipal

characteristics, we estimate that exporting municipalities experienced an average reduction of

0.063 percentage points in deforested area relative to unaffected ones for every US$1,000 in

exports per worker. Column 4 tests the coefficients’ sensitivity to the inclusion of the share of

a municipality’s area that was already deforested in 2000. Because the model is estimated in

first-differences, this term actually expresses the accumulated change in a municipality‘s de-

forested area between 2000 and the last year when 100% of its original forest cover was still

intact. Since this likely refers to remote times, including 2000’s deforestation does little towards

controlling for immediate pre-trends, which would be our intention. Still, it shows us that XD’s

coefficient does not depend on the stock of deforested area in the baseline year, as the estimates

change only slightly from column 3 to 4.

In column 5, we control separately for the share of workers employed in soybean farm-

ing and mining activities, which account for the majority of what is exported from the Legal

Amazon to China, according to table A4 in Appendix A. The share of mining workers causes

XD’s coefficient to lose significance, turn positive and, together with the share of workers in

soybeans, actually grow in magnitude. Consider table A5, where the first and second columns

reproduce the third and fifth of table 2: the exclusion of the share of soybean workers, in col-

umn 3, reduces the magnitude of XD’s coefficient, but does not make it statistically significant.
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Table 2: Difference in deforested area as share of municipality - Amazon rainforest

(1) (2) (3) (4) (5) (6)

OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Import shock (IS) -4.312 -1.743 0.218 0.212 -0.690 2.614

(6.262) (6.821) (4.644) (4.974) (4.743) (3.819)

Export shock (XD) -0.134∗∗∗ -0.134∗∗∗ -0.063∗∗ -0.072∗∗ 1.763 -0.018

(0.029) (0.028) (0.031) (0.034) (1.525) (0.032)

KP F-stat 62.30 59.99 60.39 9.494 63.23

No. of munic. 738 738 738 738 738 738

No. of clusters 100 100 100 100 100 100

Mesoregion trends Y Y Y Y

Munic. controls Y Y Y Y

% deforested (2000) Y

% labor in main exports Y

% protected lands Y

Standard errors (in parentheses) clustered by microregions. Regressions are weighted by the municipality’s area

in km2. Municipal-level controls are fixed in 2000 and interacted with year dummies, including a quadratic

polynomial of per capita income, share of workers in the primary sector and in non-traded sectors, share of

households in urban areas and share of territory with other vegetation or hydrography. Also, we account for vis-

ibility issues when evaluating the change in a municipality’s deforested area, labeled by PRODES as obstructed

by clouds or “unobserved”. “KP F-stat” refers to the heteroskedasticity-robust Kleibergen-Paap test for weak

instruments. The municipality of Manaus is not included in the sample, as it contains a tax-free economic zone.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

On the other hand, column 4 shows that the exclusion of the share of mining workers alone

makes XD’s effect revert to what it was before controlling for any labor shares. Because the

inclusion of these shares has the same effect as controlling for “specific” mining and soybean

shocks (given by si,mining · gmining and si,soybeans · gsoybeans, as in equation (3)), we can interpret

column 5 of table 2 as meaning that the China shock variation related to all other activities does

not have any impact on deforestation17. In fact, XD’s coefficient increases drastically due to

how little variation is left in it: the correlation between the “demand for exports” shock and the

share of mining workers in each municipality is of 94% in the Amazon region, reaching 98% if

we weight municipalities by their area, as we do in our regressions. By restricting the compar-

ison of municipalities to those that are assigned similar levels of the “mining shock”, we leave

XD with little residual variation, which suggests that if there is any effect of the China shocks

17Because g j does not vary along i, it becomes a scaling factor in si, j ·g j when we include it as a separate regressor.



26

on deforestation, it is restricted to mining activities18. Column 5 of table A5 reinforces this

argument, as it shows that a modified exports shock, where we ignored mining and soybeans

when summing over activities to get the exposure to trade variables, is not relevant to explain

deforestation of the Amazon.

Related to this discussion, we considered “winsorized” versions of the exposure to trade

variables and their instruments to investigate the influence of possible outliers. We limited both

extremes of the shocks’ distributions to the 5th and 95th percentiles, with all observations outside

this interval assuming the value of the closer bound. However, this procedure virtually led to

the censoring of municipalities with any specialization in mining, as the correlation between

the share of mining workers and XD subtracted of its winsorized counterpart is 97.4%, reaching

99.3% when weighted by municipal area. Hence, standard procedures that remove outliers

actually restrict the sample in a non-random fashion, discarding all variation related to a specific

economic activity. This illustrates how much the shock variation in mining products deviates

from that of other sectors.

Nonetheless, we do not take from the results in table 2 that mining activities are “environ-

ment friendly”. First off, change in deforested area measures only one dimension of environ-

mental quality. Regardless of the actual amount of deforestation a typical mining operation

promotes, it also involves other types of environmental hazards, such as the disposal of toxic

residues. Putting that aside, notice how XD also became statistically insignificant in column

6 of table 2, where we included the share of a municipality’s area that belongs to indigenous

territories and two different types of conservation units, which vary in the strictness of forest

protection and in what economic activities can be performed within their limits. This suggests

that the China shocks are not relevant to explain deforestation once we restrict variation to mu-

nicipalities with similar levels of environmental protection, implying that what our estimates

capture as the impact of the “demand for exports” shock on deforestation is actually the effect

of a time-varying factor associated with protected lands.

This confounding problem between the occurrence of mining activities in 2000 and the areas

of protected lands is most likely caused by a shortcoming of using local labor shares as weights

in the shift-share variables to distribute variation from the China shocks throughout municipal-

ities. The labor data we take from the Census does not discriminate mining workers by the

metals they extract, so that, considering that China’s main imports from the mining sector were

of iron ores, the shift-share variable might have assigned fractions of China’s demand for iron

to mining municipalities who do not actually produce it. For example, it could have assigned

it to those that do not contain large mining operations, since the extraction of iron ores in the

Legal Amazon is concentrated in the region of Carajás, Pará (PA), where Brazil’s biggest iron

mine is located (BRASIL, 2009). In this case, the “size” aspect would help explain why XD’s

18It also explains the significant drop in the associated F-stat for testing joint relevance of the instruments.
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effect vanishes once we control for the existence of protected lands: the negative coefficient in

column 3 of table 2 would result from comparing municipalities with large protected areas and

small-scale mining, which is feasible near or inside conservation units, to those with low for-

est protection but no mining activities19. Figure 6 shows how protected lands in 2000 actually

overlap several spots of mining interest in Pará and surrounding states. Mining activities are

only allowed to take place in some types of “sustainable use” units, being strictly forbidden in

those of “integral protection” and indigenous territories, thus making it more difficult to develop

large-scale operations in these locations.

Figure 6: Protected lands and mineral occurrences in the Amazon

Sources: FUNAI, IBGE and the Ministry of the Environment (MMA).

However, small-scale mining activities most likely are not the main cause of the confound-

ing problem. Recall that, according to Adão et al. (2018), the shift-share estimator gives more

weight to locations with higher shares of their workers in activities affected by the China shocks,

meaning that the effects we estimate mostly reflect those of municipalities with higher exposure

19A recent study identified 453 illegal mining sites in the Brazilian Amazon, describing the situation as “epidemic”

(MORAES, 2018). Their maps show that these sites concentrate in the state of Pará (PA) and are indeed close

to or inside protected lands. While their data refers to recent years, it is not unlikely that a similar situation held

throughout the 2000’s, especially if we consider that monitoring technologies have improved over the years, so

that running mining sites close to or inside protected areas might have been easier in the period we are studying.
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to them, such as those depicted in figure 3. Comparing those maps to the one in figure 6, we

see not only that mining in Carajás takes place inside a “sustainable use” conservation unit, but

that the two municipalities in the north of Pará that are highly exposed to China’s “demand for

exports” shock also contain large areas of conservation units and indigenous territories. Min-

ing in these locations, however, is of aluminum ores, which China did not start importing from

Brazil until 2012, as figure A1 in Appendix A shows20. This illustrates how the shift-share

misallocation issue and the confounding presence of protected lands combined to produce the

deceiving result in column 3 of table 2: the shock variation generated in Carajás from iron ores

exports was assigned to municipalities that not only were large producers of other minerals,

but also had significant shares of their territory protected by conservation units and indigenous

territories. This is corroborated by the results in table A6, where we reestimate the models in

table 2 without the municipalities where the Carajás mines are located: despite removing the

“true” major source of variation in XD, the coefficients barely change.

In sum, mining activities did not reduce deforestation of the Amazon rainforest: the share

of workers in mining activities was endogenous in column 5 of table 2, as it correlates with

the existence of protected lands, much more likely to be effective in preserving forest cover.

This issue, combined with insufficiently detailed labor data, led the shift-share variable to al-

locate important shock variation to unaffected mining municipalities which incidentally also

experienced effective forest protection. As a result, the estimated impact of China’s “demand

for exports” shock appears to actually have been the influence of a trend that was common

to municipalities with similar shares of their territory under protected lands. Indeed, during

the 2000’s, while actions seeking to increase monitoring and strengthen law enforcement were

implemented to reduce deforestation in the whole Legal Amazon21, there is evidence that the

20Throughout the text, we have mentioned the importance of iron in Brazil’s commercial relation with China.

Figure A1 provides some visual support to those statements, as it shows that iron ores were virtually the only

minerals China imported from Brazil between 2000 and 2010. In addition, it helps address concerns over possible

impacts of the China shocks in other mining products. Manganese is used in the production of steel, and is thus

a complementary good to iron, which explains why China’s relevance as an importer of ores of both these metals

correlate throughout the 2000’s. Coincidentally, Carajás is also the main producer of manganese ores in the

Legal Amazon, with Pará accounting for 88.7% of the total volume exported to China between 2000 and 2010,

according to ComexStat. Since the municipalities that export manganese to China are generally also the ones

who export iron, we choose to not address this “manganese China shock” explicitly in our analysis. As for

aluminum ores, it is clear that China did not directly influence its production, which lends credibility to our

argument that there is a shift-share misassignment problem. The situation for other minerals is generally similar

to that of aluminum, with the exception of chromium ores (not depicted), to which China’s relevance as an

importer rose abruptly between 2005 and 2010. These exports were entirely from the the state of Amapá (AP),

where no mining workers were identified in 2000, meaning that the shift-share variable necessarily misassigns

this specific shock.
21These actions were adopted within the scope of the PPCDAm program, which is credited to have reduced de-
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specific management of conservation units also improved in this period. For instance, a larger

share of the federal units reported having performed vegetation recovery, detection of threats,

law enforcement and educational actions between 2008 and 2010 than in 2003 to 2005 (ICM-

BIO/WWF, 2012).

Table 3 presents results for the change in deforested area of the Cerrado biome. Once the

instruments are introduced, from column 2 onwards, the China shocks do not seem to cause any

differences between exposed and unexposed municipalities in terms of deforestation. The KP

statistic also reveals a very weak first stage, which is mainly due to the problem of low corre-

lation between ivIS and IS. However, even when we fit our model only on XD (instrumented

by ivXD) and the controls, our results do not show any significant effects, notwithstanding a

much stronger first stage. Hence, deforestation in Cerrado municipalities does not appear to

have been affected by the China shocks.

Table 3: Difference in deforested area as share of municipality - Cerrado savanna

(1) (2) (3) (4) (5) (6)

OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Import shock (IS) -2.562∗∗ -9.846 0.258 0.969 0.299 -0.360

(1.180) (10.545) (3.675) (4.091) (4.654) (3.634)

Export shock (XD) -0.022 -0.024 -0.081 -0.045 -0.092 -0.107

(0.148) (0.168) (0.081) (0.066) (3.548) (0.083)

KP F-stat 0.271 0.136 0.137 0.0951 0.136

No. of munic. 1364 1364 1364 1364 1364 1364

No. of clusters 169 169 169 169 169 169

Mesoregion trends Y Y Y Y

Munic. controls Y Y Y Y

% deforested (2000) Y

% labor in main exports Y

% protected lands Y

Standard errors (in parentheses) clustered by microregions. Regressions are weighted by the municipality’s area

in km2. Municipal-level controls are fixed in 2000 and interacted with year dummies, including a quadratic

polynomial of per capita income, share of workers in the primary sector and in non-traded sectors, share of

households in urban areas and share of territory with other vegetation or hydrography. “KP F-stat” refers to the

heteroskedasticity-robust Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We mentioned earlier that absence of impacts on the Cerrado could be caused by lack of

forestation rates in the Amazon. Assunção et al. (2015) show that it was effective in containing deforestation in

spite of the influence of changes in prices of agricultural commodities in international markets.



30

variation in ∆yi, as municipalities in the Center-West region of Brazil were already at an ad-

vanced stage of deforestation in 2000. While reasonable, this argument actually relates to the

dynamics of soybean farming in Brazil, which can explain why our estimates indicate that its

expansion induced by China’s demand is not a driver of deforestation in either the Amazon or

Cerrado, despite commonly being presented as such22. Domingues and Bermann (2012) argue

that soybean harvesting does not directly cause deforestation, but creates the economic incen-

tives for other activities to do so. Historically, it has moved north through the Center-West

by replacing smaller family-owned agricultural establishments, thus creating a profitable mar-

ket for land. Squatters then advance over the Amazon removing forest cover, which is turned

into grazing lands where low-productivity livestock farms serve as a placeholder activity to as-

sert land possession. This practice is facilitated by the problematic regulation regarding land

property rights in the Amazon, where the physical occupation of an area tends to suffice for a

squatter to claim ownership, which is eventually sold to soybean farmers. Therefore, soybean

harvesting does not seem to be a direct driver of deforestation; rather, it expands over portions

of the forest that were cleared by other activities. Since our exposure to trade variables assign

China’s demand for soybeans to municipalities that already were producing it in 2000, they are

unable to capture this indirect impact on deforestation.

5.2 Effects on mortality

We are interested in possible effects of the China shocks on the environment, despite the fact

that reliable pollution data is unavailable at the level of municipalities. Thus, we instead focus

on changes in mortality rates, which Chay and Greenstone (2003) and Bombardini and Li (2018)

show to be plausibly related to changes in environmental quality. Table A7 describes empirical

distributions of the number of deaths per 100,000 inhabitants, where we present statistics for

each of the six age groups considered in our regressions. Considering that these are weighted

by municipal population at each group23, the fact that the average Brazilian municipality expe-

rienced an increase in mortality of all ages is a result likely driven by municipalities with larger

and older population, since mortality of the five younger age groups decreased between 2000

and 2010, with the greatest reductions being of deaths of children with less than 1 and less than

5 years of age.

Table 4 presents results for mortality in general. Coefficients are to be read as the expected

change in deaths per 100,000 inhabitants following an increase of US$1,000 per worker in a

municipality’s exposure to trade. Columns vary in the age group ∆yi is evaluated in, but they

all feature similar specifications. Panel A contains 2SLS estimates of models that include the

22According to Gibbs et al. (2015), this perception went as far as to lead soybean traders to sign the Soy Moratorium

in 2006, in which it was agreed to boycott producers in the Amazon.
23Which we also use as weights in our regressions.
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exposure to trade variables, baseline municipal characteristics and a set of mesoregion dummies.

Also, because we have mortality data starting in 1996, we can control for the change of mortality

between 1996 and 2000, even though this term does not capture a decennial trend as a “proper”

lag of ∆yi would. Panel B further adds the share of workers employed in mining activities and

soybean farming24.

Table 4: Difference in number of deaths per 100,000 inhabitants - All causes

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -2.531∗ -2.526 -0.386 -1.654∗ -3.020 -18.253∗∗

(1.482) (1.569) (0.327) (1.003) (2.379) (8.968)

Export shock (XD) -0.086 -0.186 -0.012 0.061 -0.232∗ -1.011

(0.144) (0.171) (0.026) (0.049) (0.135) (0.704)

KP F-stat 6.951 7.066 6.509 6.936 8.376 7.470

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -2.236∗ -2.398∗ -0.328 -2.113∗ -3.215 -13.210∗

(1.296) (1.309) (0.306) (1.127) (2.140) (7.132)

Export shock (XD) -0.243 0.081 0.145 0.728∗∗ -1.231∗∗∗ -6.204∗

(0.733) (0.830) (0.162) (0.310) (0.359) (3.757)

KP F-stat 70.18 71.75 69.36 73.11 69.53 70.55

No. of munic. 4264 4264 4264 4264 4264 4264

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Nearly all estimates in panel A are negative for both shocks, yet most cannot be distin-

24Unlike our regressions for deforestation, the inclusion of the share of a municipality’s area that is protected by

conservation units and indigenous territories is not relevant to explain the mortality outcomes.
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guished from zero. Introducing the share of workers in mining and soybean farming (panel B)

changes magnitudes but, being reduced form estimates, they are not really informative on how

the China shocks could be causing these changes in mortality. For instance, what would explain

the increase of US$1,000 in imports per worker leading to a reduction of 18 deaths per 100,000

people relative to unexposed municipalities? Several factors are likely to be acting at once and

it is not clear whether any of them is dominant or if they tend to offset each other, as suggested

by the results for the five first age groups.

Our strategy to disentangle these effects is to select a subset of mortality causes that are

particularly sensitive to the channels we are interested in; that is, we look for environmental

impacts of the China shocks in outcomes that should be more responsive to them. Hence, we

investigate changes in mortality by “pollution-related” causes, those that are supposed to be

closely associated with pollution from agricultural and industrial activities. We gathered ICD

codes of illnesses that studies in the public health and medical literatures report to have occurred

in the surroundings of polluting production facilities. These are listed in table A8.

Additionally, we consider three other groups of causes of death: “sanitation-related”, as-

sociated with sewage problems and vector-borne diseases, as presented in BRASIL (2010, p.

65); “external causes”, referring to what DataSUS classifies as deaths resulting from violent

actions and accidents; and an expanded group of pollution-related illnesses, which adds a set

of respiratory and cardiac diseases, as well as specific cancers, to those in table A825. This

broader group serves as a check of the sensitivity of our estimates to changes in our selection of

pollution-related illnesses. As we did for total mortality, we present the empirical distributions

for these four sets of causes of death in tables A9, A10, A11 and A12.

Table 5 features our results for the change in mortality due to the first set of pollution-related

causes. The “demand for exports” shock displays a distinct pattern in panel A: a positive effect

on mortality of younger children that gets smaller and loses significance as the evaluated age

increases, becoming negative for ages beyond 10. The positive effect on all ages is entirely

driven by young children’s mortality26. Then, for children less than one year old, an increase of

US$1,000 in exports per worker would cause the change in mortality between 2000 and 2010 to

increase by 0.074 children per 100,000 inhabitants, on average, when compared to municipali-

ties relatively unaffected by the export shock. While seemingly small, this is a relevant impact if

we take into account that, according to table A9, the nationwide average reduction in mortality

of children in this age group was of 0.166 per 100,000 people. The small KP statistics, which

indicate a weak first stage, are once again caused by the low correlation between ivIS and IS.

Fitting our model only on XD and the controls barely changes the point estimates and returns

a much higher F-statistic, as shown in table A13, which easily rejects the hypothesis that ivXD

25These illnesses are taken from Bhopal et al. (1994) and Gianicolo et al. (2013).
26Although we do not show it here, estimates for ages higher than 40 were statistically zero.
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is a poor instrument27. Panel B of table 5, however, shows that this pattern vanishes once we

restrict variation to municipalities with similar specialization in mining and soybean farming.

As in our results for deforestation in the Amazon, it is specifically the inclusion of the share of

workers in mining that removes all explaining power from XD, suggesting an effect restricted

to municipalities specialized in mining activities.

Table 5: Difference in number of deaths per 100,000 inhabitants - Pollution-related illnesses

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.193 -0.228 0.022 -0.036 -0.067 -0.088

(0.369) (0.391) (0.049) (0.077) (0.078) (0.702)

Export shock (XD) 0.074∗∗∗ 0.069∗∗ 0.008∗ -0.008∗∗ -0.001 0.077∗∗

(0.027) (0.028) (0.005) (0.004) (0.004) (0.035)

KP F-stat 6.990 6.996 6.545 6.825 8.407 7.529

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -0.202 -0.235 0.022 -0.035 -0.066 -0.087

(0.375) (0.397) (0.049) (0.078) (0.078) (0.713)

Export shock (XD) 0.216 0.180 0.005 -0.016 -0.019 0.049

(0.162) (0.179) (0.024) (0.039) (0.041) (0.287)

KP F-stat 91.31 79.03 4179.7 68.84 70.89 76.78

No. of munic. 4264 4264 4264 4264 4264 4264

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We discussed earlier that labor shares could be endogenous, but this does not appear to be the

27As we mentioned earlier, XD seems to have little influence from Brazil-specific characteristics, implying that we

could use standard OLS instead of 2SLS in these regressions without the “supply of imports” shock.
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case of the inclusion of the share of mining workers in the mortality regressions. Considering

the characteristics we control for, it is unlikely that municipalities specialized in mining would

be less successful in reducing pollution-related infant mortality because of factors other than

environmental hazards caused by the mining activity itself. That is, we do not believe that

these municipalities share some unobserved factor that could also explain the increase in infant

deaths. Supporting this interpretation is that the pattern observed in XD’s coefficient in panel

A of table 5 does not appear in our regression for mortality in general nor in deaths caused

by external factors, as shown in tables 4 and A14, respectively. That is, the effect seems to

be specific to causes of death associated to pollution, which is corroborated by our results

in table A15, where we consider the broader set of pollution-related illnesses: although the

pattern is not as distinct, the signs of the coefficients are the same and statistical significance is

preserved at the earlier ages. Furthermore, our estimates change only slightly when we restrict

the sample to municipalities where at least 80% of the population in 2010 did not immigrate in

the past decade, as shown in table A16. This suggests that the influence of modifications in the

composition of municipal populations is small, partially addressing the concern that mortality

rates in exporting locations, which received an influx of workers according to Haddad and

Maggi (2017), could change simply due to immigrants systematically having different health

conditions than the original inhabitants.

The fact that the coefficient is positive at earlier ages and fades as we evaluate older groups

strengthens our argument as well: it suggests that the influence on mortality of some channel

connected to mining is either growing or diminishing as age increases. Taking into account

that, according to WHO (2018), children are affected by air pollution in different and more

severe ways that other age groups, since organs such as the brain and lungs are still in de-

velopment28, we believe that the influence on mortality by pollution-related illnesses we see

changing over age is that of poor environmental quality, which fades as the evaluated outcome

becomes less vulnerable to illnesses associated to pollution. Furthermore, the results in table

A17 indicate that this impact is indeed of environmental hazards caused by mining activities,

since the shocks have no effects on mortality by sanitation-related causes, which usually re-

sult from untreated domestic sewage. This is important because, according to WHO/UNICEF

(2000), young children are the most vulnerable of all age groups to water pollution, so that if the

change in environmental quality had been caused by channels other than hazards from mining

activities, such as poor infra-structure associated to unplanned and haphazard urbanization, the

estimates for the effect of the shocks on infant deaths by sanitation-related illnesses would have

been statistically significant.

Table 5 then suggests that mining municipalities experienced higher infant mortality by

pollution-related causes due to the environmental hazards associated with their specialization.

28In fact, environmental hazards are responsible for more than 25% of deaths of children under five years of age.
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However, to say that the estimated coefficients in panel A can be interpreted as indirect evidence

of China’s “demand for exports” influence on environmental quality in Brazil is debatable. In

fact, panel B suggests that the relative increase in infant mortality could have occurred re-

gardless of the China shock, since XD’s coefficient is statistically null once we hold fixed the

variation in mining specialization. That is, any shock variation that is not associated with min-

ing is not relevant to explain changes in mortality, thus raising the possibility that the effect we

estimate in panel A is simply that of developing mining activities. The shift-share misalloca-

tion problem, which is also present here, supports this argument to an extent: shock variation

generated in municipalities that produce iron ores was also assigned to locations specialized

in other minerals, and yet the pattern in the results of table 5 can be replicated, although with

smaller magnitudes and larger standard errors, even when we exclude the main iron extract-

ing municipalities from our sample, as shown in table A1829. Hence, despite discarding the

mining locations that were actually exposed to China’s “demand for exports” shock, the results

for infant mortality caused by pollution-related illnesses still echo those obtained with the full

sample. If the distinctions between mining activities and any others that municipalities can spe-

cialize in were irrelevant to explain mortality, these estimates would have been insignificant and

the effects in panel A of table 5 could be credibly attributed to the China shocks alone.

Although simply specializing in mining activities explains our results, the reduced magni-

tudes and statistical significance in table A18 may be indicative of a scale effect30 caused by

China’s demand for iron ores, since the impact on infant mortality was stronger when munici-

palities that actually extract iron were included in the sample. Therefore, our estimates support

the claim that mining activities led to environmental impacts severe enough to deteriorate local

health significantly more on average than in municipalities with other specializations. On the

other hand, we cannot determine whether the China shocks exacerbated this effect.

6 Conclusions

In this study, we investigated possible effects of the “China shock”, China’s advance over

international markets between 2000 and 2010, on the environmental quality of Brazilian munic-

29We removed the two Pará municipalities that contain the Carajás mining complex as well as the 25 municipalities

in the Minas Gerais (MG) region known as the ”Iron Quadrangle”, where the state’s production of iron ores is

concentrated. Pará and Minas Gerais combined accounted for 85.7% of the total value and 90.2% of the total

volume exported of iron ores to China between 2000 and 2010.
30According to Copeland and Taylor (2004), an usual approach to model the effects of trade and economic growth

on the environment is to decompose them in three channels: scale, composition and technique. The “scale effect”

would be the change in pollution emissions following a shift of the production possibilities frontier. With regards

to the estimated impact on mortality, we could have additionally, or perhaps alternatively, a “composition effect”

if the productive factors of these municipalities were redirected to mining from other economic activities.
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ipalities, as these local economies turned out to be more or less exposed to China’s “demand for

exports” and “supply of imports” based on their economic specialization in 2000. We worked

under the premise that, if the China shocks did indeed lead to environmental changes in Brazil,

we should be able to estimate them by exploring this difference in exposure across municipali-

ties.

We first checked whether China caused any changes on deforestation rates of municipalities

in the Amazon rainforest and the Cerrado savanna. Our results did not identify any average

differences between locations that were predicted to have been exposed to trade with China in

different intensities; on the contrary, they actually highlighted how other factors, such as the

presence of forest conservation units or poorly defined property rights, are much more relevant

to explain the dynamics of deforestation than the economic incentives given by China’s de-

mand for commodities. Our evidence is then aligned with that provided by López and Galinato

(2005): the effects of trade on deforestation are small and can go in different directions, sug-

gesting that domestic idiosyncrasies play a larger role. In the case of Brazil specifically, they

argue that government incentives for human settlement in the Amazon, which included invest-

ments in infrastructure, tax benefits and subsidized credit, were more important to determine

deforestation. Faria and Almeida (2016)’s estimates of the impact of openness to trade on the

Amazon support this interpretation, as the effects of conservation units and existence of disputes

over property rights are significant and exceed those of trade in all of their specifications31.

We also set out to study other measures of environmental quality since deforestation, in

addition to not encompassing the whole country, is not necessarily informative of hazards to

water, air and soil which may ensue from toxic residues produced by industrial and agricultural

activities. Due to the lack of reliable information on pollution at the level of municipalities, we

explored variation in mortality rates to investigate environmental impacts. Our estimates show

that municipalities affected by China’s “demand for exports” shock experienced, on average,

more deaths of children under one and five years of age per 100,000 inhabitants. The increase

in mortality was restricted to deaths caused by illnesses related to pollution, and, importantly,

occurred in municipalities where mining was a particularly relevant activity to the local econ-

omy. This characteristic suggests that our estimates of the environmental effect of the China

shocks actually capture the impact of specializing in mining activities rather than that of being

exposed to trade with China. However, we did find some evidence that the “demand for exports”

shock might have exacerbated this impact in municipalities that extract iron ores.

In summary, the evidence produced in our study does not support that the heterogeneous

effects of the China shocks on local labor markets in Brazil were strong enough to translate

into changes of environmental quality. Building on the results of Costa et al. (2016), who were

31The disputes over property rights could be seen as an indirect channel through which soybean farming influences

deforestation, as argued by Domingues and Bermann (2012).
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interested in the “winners” and “losers” of this trade boom, it seems from our estimates that

the economic gains of “winning” locations were not enhanced nor offset by changes in local

environmental quality, neither were “losers” being compensated or made worse off. Due to

limitations of our data and shortcomings of the shift-share strategy, general equilibrium effects

may have led to attenuation bias, which could partially explain the lack of significant effects.

Still, according to the literature, the effect of trade on the environment can go in conflicting

directions, which may amount to a small net impact32. Therefore, while a different empirical

strategy might be able to produce more robust evidence on environmental impacts of the China

shocks, we do not find it surprising that our estimates for these effects should be small, if not

insignificant. It is important to note, however, that the results say little about aggregate impacts;

that is, they are not informative of environmental effects of the China shocks on Brazil as a

whole. Because we focused on the comparison of municipalities, our empirical strategy could

only provide insights on relative changes, thus leaving the issue of a countrywide environmental

impact unaddressed.

32See Copeland and Taylor (2004).
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A Additional figures and tables

Table A1: Brazilian imports

2000 2010

World China World China

Mineral fuels, mineral oils, bituminous substances;

mineral waxes

8.29 0.07 24.23 0.18

Nuclear reactors, boilers, machinery and mechanical

appliances; others

9.03 0.17 23.09 4.55

Electrical machinery and equipment and parts

thereof; others

9.13 0.36 18.00 6.47

Vehicles other than railway or tramway rolling-stock,

and parts and accessories thereof

3.73 0.01 13.98 0.55

Organic chemicals 3.28 0.14 6.83 1.04

Plastics and articles thereof 1.98 0.02 5.28 0.42

All imports 55.85 1.22 147.05 20.71

Source: ComexStat. Values are in billions of 2000’s US dollars free of boarding (FOB).

Table A2: Brazilian exports

2000 2010

World China World China

Ores, slag and ash 3.26 0.27 24.95 11.02

Mineral fuels, mineral oils, bituminous substances;

mineral waxes

0.91 0.04 18.94 3.28

Sugars and sugar confectionery 1.29 0.00 10.48 0.42

Vehicles other than railway or tramway rolling-stock,

and parts and accessories thereof

4.44 0.01 9.82 0.02

Meat and edible meat offal 1.61 0.01 9.61 0.18

Oil seeds and oleaginous fruits; grains, seeds, others 2.21 0.34 9.04 5.77

All exports 55.12 1.09 163.35 24.91

Source: ComexStat. Values are in billions of 2000’s US dollars free of boarding (FOB).
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Table A3: Main soybeans exporters among states from the Amazon and Cerrado area

2000 2010

World China World China

Mato Grosso (MT) 0.55 0.04 2.67 1.65

Goiás (GO) 0.18 0.01 0.67 0.48

Bahia (BA) 0.02 0 0.50 0.17

Mato Grosso do Sul (MS) 0.02 0 0.41 0.33

Maranhão (MA) 0.09 0.02 0.33 0.05

Brazil 2.19 0.34 8.93 5.77

Source: ComexStat. Values are in billions of 2000’s US dollars free of boarding (FOB).

Table A4: Exports from states belonging to the Legal Amazon region

2000 2010

World China World China

Aluminum and articles thereof 1.01 0 0.95 0

Ores, slag and ash 0.84 0.04 7.99 3.43

Oil seeds and oleaginous fruits; grains, seeds, others 0.65 0.06 3.37 1.75

Wood and articles of wood; wood charcoal 0.49 0.02 0.51 0.04

All exports 5.10 0.14 21.41 5.56

Source: ComexStat. Values are in billions of 2000’s US dollars free of boarding (FOB). States included: Acre

(AC), Amapá (AP), Amazonas (AM), Maranhão (MA), Mato Grosso (MT), Pará (PA), Rondônia (RO), Roraima

(RR) and Tocantins (TO).
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Table A5: Difference in deforested area as share of municipality - Amazon rainforest

(1) (2) (3) (4) (5)

2SLS 2SLS 2SLS 2SLS 2SLS

Import shock (IS) 0.218 -0.690 0.134 0.201 1.197

(4.644) (4.743) (4.646) (4.651) (4.724)

Export shock (XD) -0.063∗∗ 1.763 0.055 -0.064∗∗

(0.031) (1.525) (0.209) (0.032)

Others exports 1.738

(1.540)

Observations 738 738 738 738 738

No. of clusters 100 100 100 100 100

Mesoregion trends Y Y Y Y Y

Munic. controls Y Y Y Y Y

% labor in mining Y Y

% labor in soybeans Y

KP F-stat 59.99 9.494 59.51 59.45 12.33

Standard errors (in parentheses) clustered by microregions. Regressions are weighted by the municipality’s area

in km2. Municipal-level controls are fixed in 2000 and interacted with year dummies, including a quadratic

polynomial of per capita income, share of workers in the primary sector and in non-traded sectors, share of

households in urban areas and share of territory with other vegetation or hydrography. Also, we account for vis-

ibility issues when evaluating the change in a municipality’s deforested area, labeled by PRODES as obstructed

by clouds or “unobserved”. “KP F-stat” refers to the heteroskedasticity-robust Kleibergen-Paap test for weak

instruments. The municipality of Manaus is not included in the sample, as it contains a tax-free economic zone.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A6: Difference in deforested area as share of municipality - Amazon rainforest (without

Carajás)

(1) (2) (3) (4) (5) (6)

OLS 2SLS 2SLS 2SLS 2SLS 2SLS

Import shock (IS) -4.349 -1.750 0.628 0.678 5.032 4.137

(6.329) (6.896) (4.720) (5.047) (4.423) (4.425)

Export shock (XD) -0.134∗∗∗ -0.134∗∗∗ -0.053∗∗ -0.061∗∗ -1.652 -0.010

(0.029) (0.028) (0.027) (0.030) (1.464) (0.029)

KP F-stat 61.51 60.10 60.57 9.483 63.42

No. of munic 736 736 736 736 736 736

No. of clusters 100 100 100 100 100 100

Mesoregion trends Y Y Y Y

Munic. controls Y Y Y Y

% deforested (2000) Y

% labor in main exports Y

% protected lands Y

Standard errors (in parentheses) clustered by microregions. Regressions are weighted by the municipality’s area

in km2. Municipal-level controls are fixed in 2000 and interacted with year dummies, including a quadratic

polynomial of per capita income, share of workers in the primary sector and in non-traded sectors, share of

households in urban areas and share of territory with other vegetation or hydrography. Also, we account for vis-

ibility issues when evaluating the change in a municipality’s deforested area, labeled by PRODES as obstructed

by clouds or “unobserved”. “KP F-stat” refers to the heteroskedasticity-robust Kleibergen-Paap test for weak

instruments. The municipality of Manaus is not included in the sample, as it contains a tax-free economic zone,

neither are Parauapebas and Canaã dos Carajás, which contain the Carajás mining complex.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A1: Evolution of selected mining exports

2000 2005 2010
0 %

20 %
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Share of iron ores in total mining exports to China
Share of iron ores in total value exported to China
China’s share as destination of the total exported value of iron ores
China’s share as destination of the total exported value of manganese ores
China’s share as destination of the total exported value of aluminum ores

Source: ComexStat.

Table A7: Descriptive statistics - difference in number of deaths per 100.000 inhabitants

Mean Std. dev. Min 1st q. Median 3rd q. Max

Aged < 1 -15.1 18.3 -229 -21 -11.8 -7.36 119

Aged < 5 -18.2 21.3 -234 -24.1 -14.2 -8.34 150

Aged 5-9 -0.973 4.12 -67.8 -2.02 -0.832 0 49.7

Aged 10-19 -1.78 9.72 -122 -6.97 -1.74 3.15 128

Aged 20-39 -5.35 27.6 -180 -22.8 -6.61 12.5 214

All ages 45.6 97.9 -1,071.6 -14.3 36.8 88 836

Statistics weighted by the municipality’s population in each age group.
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Table A8: Pollution-related illnesses

ICD-10 code Description

B15 Acute hepatitis A

B172 Acute hepatitis E

D74 Methemoglobinemia

J00-J06 Acute upper respiratory infections

J12-J18 Pneumonia

J20-J22 Acute bronchitis, bronchiolitis; others

J45-J46 Asthma

K710, K712 Acute toxic hepatitis

K850 Acute pancreatitis

Q Congenial malformation

T573, T650-T651 Intoxication by inorganic substances

T60 Toxic effects of exposure to pesticides

Z581 Exposure to polluted water

ICD-10 codes compiled based on Prüss-Ustün et al. (2011) and Alwahaibi and Zeka (2016).

Table A9: Descriptive statistics - difference in number of deaths per 100.000 inhabitants -

Pollution-related illnesses

Mean Std. dev. Min 1st q. Median 3rd q. Max

Aged < 1 -0.166 3.85 -81 -1.33 -0.292 .6 56.6

Aged < 5 -0.213 4.14 -81 -1.65 -0.463 .801 56.6

Aged 5-9 .005 .803 -34.5 0 0 0 44.5

Aged 10-19 .017 .866 -34.9 0 0 0 34.2

Aged 20-39 .045 .89 -52.1 -0.019 0 .029 28.4

All ages -0.168 6.4 -91.2 -2.29 -0.28 1.51 113

Statistics weighted by the municipality’s population in each age group.
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Table A10: Descriptive statistics - difference in number of deaths per 100.000 inhabitants -

Pollution-related illnesses (broader group)

Mean Std. dev. Min 1st q. Median 3rd q. Max

Aged < 1 -0.171 3.87 -81 -1.34 -0.244 .709 56.6

Aged < 5 -0.171 3.92 -81 -1.34 -0.244 .709 56.6

Aged 5-9 0.002 .843 -34.5 0 0 0 44.5

Aged 10-19 0.005 1.03 -34.9 -0.003 0 .011 34.2

Aged 20-39 .024 1.91 -65.7 -0.287 0 .305 43

All ages 10.2 15.9 -169 .419 7.07 16.4 187

Statistics weighted by the municipality’s population in each age group.

Table A11: Descriptive statistics - difference in number of deaths per 100.000 inhabitants -

Sanitation-related illnesses

Mean Std. dev. Min 1st q. Median 3rd q. Max

Aged < 1 -1.53 3.67 -66.4 -1.62 -0.557 0 46.9

Aged < 5 -1.81 4.26 -75.9 -2.1 -0.709 0 46.9

Aged 5-9 .016 .599 -15.5 0 0 0 22.2

Aged 10-19 -0.013 .773 -36.7 0 0 0 38.7

Aged 20-39 -0.122 1.52 -44.5 -0.258 0 0 42.7

All ages -2.68 9.83 -161 -4.44 -1.65 .572 105

Statistics weighted by the municipality’s population in each age group.

Table A12: Descriptive statistics - difference in number of deaths per 100.000 inhabitants -

External causes

Mean Std. dev. Min 1st q. Median 3rd q. Max

Aged < 1 -0.184 1.6 -51.4 -0.241 0 0 45.1

Aged < 5 -0.648 3.09 -58.9 -1.45 -0.415 0 49.5

Aged 5-9 -0.485 2.51 -56.8 -0.859 -0.245 0 49.7

Aged 10-19 -0.861 8.37 -87 -5.54 -0.409 3.67 128

Aged 20-39 .572 21.7 -137 -13.8 1.09 13.7 154

All ages 5.89 34.5 -273 -17.4 6.78 28.1 203

Statistics weighted by the municipality’s population in each age group.
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Table A13: Difference in number of deaths per 100,000 inhabitants - Pollution-related illnesses

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Export shock (XD) 0.073∗∗∗ 0.068∗∗ 0.008∗ -0.008∗∗ -0.001 0.077∗∗

(0.027) (0.028) (0.005) (0.003) (0.004) (0.035)

KP F-stat 1430.2 1333.8 6550.3 3932.8 978.5 1352.0

Panel B: controlling for % of workers in mining and soybeans

Export shock (XD) 0.151 0.105 0.012 -0.027 -0.040 0.022

(0.131) (0.161) (0.023) (0.044) (0.038) (0.237)

KP F-stat 1424.7 1289.4 6164.8 2592.9 978.1 1319.4

No. of munic. 4264 4264 4264 4264 4264 4264

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A14: Difference in number of deaths per 100,000 inhabitants - External causes

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.185 -0.352 -0.079 -1.809∗∗ -3.146 -6.079∗∗

(0.193) (0.311) (0.156) (0.906) (1.934) (2.750)

Export shock (XD) -0.003 -0.046 -0.007 0.016 -0.294∗∗∗ -0.411∗∗

(0.013) (0.029) (0.023) (0.045) (0.113) (0.194)

KP F-stat 6.823 6.906 6.509 7.253 9.196 7.567

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) 0.011 -0.238 -0.093 -2.053∗∗ -3.841∗ -6.611∗∗

(0.197) (0.275) (0.166) (1.001) (2.162) (3.265)

Export shock (XD) -0.087 -0.009 0.027 0.507∗ -1.372∗∗∗ -0.767

(0.084) (0.121) (0.069) (0.265) (0.312) (0.618)

KP F-stat 66.85 69.96 69.41 95.51 106.3 73.62

No. of munic. 4264 4264 4264 4264 4264 4264

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A15: Difference in number of deaths per 100,000 inhabitants - Pollution-related illnesses

(broader group)

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.213 -0.219 0.019 -0.038 -0.313 -0.186

(0.375) (0.380) (0.053) (0.084) (0.212) (1.372)

Export shock (XD) 0.076∗∗∗ 0.073∗∗∗ 0.006 -0.004 -0.022 0.060

(0.027) (0.025) (0.006) (0.009) (0.018) (0.067)

KP F-stat 6.983 6.998 6.520 6.819 8.464 7.481

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -0.167 -0.174 0.022 -0.044 -0.136 0.606

(0.308) (0.308) (0.051) (0.079) (0.211) (1.235)

Export shock (XD) 0.124 0.125 -0.012 -0.020 -0.168∗∗∗ -0.735

(0.080) (0.081) (0.034) (0.025) (0.040) (0.460)

KP F-stat 87.45 76.87 4627.2 69.08 114.7 70.84

No. of munic. 4264 4264 4264 4264 4264 4264

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A16: Difference in number of deaths per 100,000 inhabitants - pollution-related illnesses

(restricted migration)

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.386 -0.484 -0.035 -0.022 -0.062 -0.396

(0.483) (0.502) (0.065) (0.114) (0.106) (0.937)

Export shock (XD) 0.079∗∗ 0.080∗∗ 0.005∗ -0.010∗∗ -0.003 0.087∗∗

(0.032) (0.033) (0.003) (0.004) (0.004) (0.041)

KP F-stat 3.959 3.952 3.869 3.943 4.602 4.233

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -0.425 -0.521 -0.038 -0.017 -0.068 -0.423

(0.509) (0.532) (0.068) (0.117) (0.112) (1.010)

Export shock (XD) 0.546 0.527 0.041 -0.052 0.069 0.359

(0.558) (0.595) (0.070) (0.129) (0.127) (1.034)

KP F-stat 3.734 3.784 3.500 3.497 3.874 3.745

No. of munic. 3387 3387 3387 3387 3387 3387

No. of clusters 523 523 523 523 523 523

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. We restrict the sample to municipali-

ties where at least 80% of the population did not immigrate in the previous decade. All specifications include the

following municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of

per capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A17: Difference in number of deaths per 100,000 inhabitants - Sanitation-related ill-

nesses

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.313 -0.229 0.010 -0.038 -0.122 -0.427

(0.412) (0.462) (0.039) (0.026) (0.146) (0.933)

Export shock (XD) -0.011 -0.014 -0.001 -0.007 -0.013 -0.084

(0.017) (0.024) (0.002) (0.005) (0.011) (0.081)

KP F-stat 6.833 6.940 6.508 7.086 8.439 7.497

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -0.239 -0.193 0.021 -0.046 -0.130 -0.043

(0.357) (0.387) (0.030) (0.028) (0.122) (0.762)

Export shock (XD) -0.093 -0.052 -0.019 -0.056∗ 0.043 -0.060

(0.116) (0.106) (0.020) (0.029) (0.041) (0.399)

KP F-stat 67.14 68.73 69.62 93.07 69.22 70.34

No. of munic. 4264 4264 4264 4264 4264 4264

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A18: Difference in number of deaths per 100,000 inhabitants - Pollution-related illnesses

(without main iron ores producers)

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.206 -0.239 0.023 -0.037 -0.063 -0.084

(0.372) (0.394) (0.049) (0.078) (0.079) (0.708)

Export shock (XD) 0.056∗ 0.048 0.009 -0.007∗∗ 0.002 0.056

(0.032) (0.030) (0.006) (0.003) (0.003) (0.037)

KP F-stat 6.933 6.930 6.471 6.741 8.301 7.445

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -0.217 -0.248 0.023 -0.036 -0.062 -0.086

(0.378) (0.401) (0.050) (0.078) (0.079) (0.720)

Export shock (XD) 0.220 0.187 0.005 -0.013 -0.016 0.064

(0.164) (0.180) (0.024) (0.039) (0.042) (0.288)

KP F-stat 6.015 6.049 5.734 5.935 6.801 6.276

No. of munic. 4239 4239 4239 4239 4239 4239

No. of clusters 552 552 552 552 552 552

Coefficients from 2SLS models, with standard errors (in parentheses) clustered by microregions. Regressions

are weighted by the municipality’s population of each age range in 2000. All specifications include the follow-

ing municipal-level controls, fixed in 2000 and interacted with year dummies: a quadratic polynomial of per

capita income, share of workers in the primary sector and in non-traded sectors, share of households in urban

areas, with access to a water supply system and sewerage services. In addition, mesoregion-year dummies and

a lag of the outcome variable referring to the change between 1996 and 2000, instrumented by its level in 1996

to avoid endogeneity through autocorrelation of residuals. “KP F-stat” refers to the heteroskedasticity-robust

Kleibergen-Paap test for weak instruments. We exclude from our sample the two municipalities that contain

the Carajás mining complex and the 25 that belong to the “Iron Quadrangle” (some are grouped together for

intertemporal consistency between 1996 and 2000).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Identification hypotheses of the shift-share IV

As mentioned in section 3, Baum-Snow and Ferreira (2015) and Bombardini and Li (2018)

argue that consistent estimation of a linear model using shift-share variables requires the re-

gional shares used as weights to be exogenous. Accordingly, Goldsmith-Pinkham et al. (2018)

show that the shift-share IV estimate is equivalent to an over-identified GMM estimator, where

the set of shares serve as the actual instruments and the shocks are used only to build the weight-

ing matrix. Therefore, parameter identification would depend solely on the exclusion restric-

tion Cov(si, j,∆εi|WWW i) = 0, with the shocks pertaining only to the relevance of the instruments.

Moreover, using this GMM equivalence, they demonstrate that the shift-share IV estimator is

a weighted average of industry-specific just-identified estimators. The weights associated with

each estimator are given the interpretation of “sensitivity to misspecification” elasticities: the

expected percentage change in bias of the GMM estimator resulting from a percentage increase

in bias of an industry’s just-identified estimator caused by a misspecification in its moment

condition. These weights are suggested to be an useful tool for applied research, as they draw

attention to the sectors where endogeneity might be more harmful to the estimate of the overall

effect.

Under Goldsmith-Pinkham et al. (2018)’s framework, we clearly could not proceed using

baseline-year labor shares in (7) because the exposure to trade measures XD and IS are already

built from them; that is, we would be “instrumenting” baseline shares with themselves, hence

not instrumenting at all. Besides, it becomes unclear why one would bother finding a set of

shifters such as China’s trade shocks when feasible versions of efficient GMM estimates can be

obtained; in fact, some might argue that proceeding by the latter would be a better option as it

does not impose arbitrary weights on the empirical moments.

Fortunately, instead of treating labor shares si, j themselves as the set of instruments and,

thus, having to abide to their exclusion restriction using lagged labor shares, Borusyak et al.

(2018) show that we can allow for endogenous weighting in (7) and still estimate our model

consistently. They demonstrate that it is the industry-level shocks who serve as instruments,

meaning that we have to ensure their exogeneity, not of the industry-location labor shares.

This is convenient, since our predicted Brazil-China trade flows in (6) are much more likely to

satisfy the orthogonality condition than baseline-year labor shares si, j. Considering that these

are relatively new advances in the literature and not yet common practice, we present Borusyak

et al. (2018)’s argument below to lend credibility to our own use of this framework.

Suppose that we wish to estimate the following equation, similar to (1):

∆yi = β∆xi +WWW ′iγγγ +∆εi, (B1)

where i indexes “locations”, WWW i is a vector of covariates such that Cov(WWW i,∆εi) = 0 and xi is

a treatment variable that could be continuous, like our exposure to trade measures, or discrete.
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We have no reason to believe that Cov(xi,∆εi|WWW i) = 0 holds, so we make use of an instrumental

variable. Consider a set of shocks g j specific to “industries” (indexed by j) and a set of weights

si, j ≥ 0 denoting the expected share of each shock j a location i would receive, with ∑ j si, j = 1.

The shift-share IV would then be:

zi = ∑
j

si, j ·g j. (B2)

Using WWW i’s annihilator matrix, we compute residualized ∆y⊥i and ∆x⊥i and obtain the indirect

least squares estimator for β :

β̂ =
∑i zi ·∆y⊥i
∑i zi ·∆x⊥i

. (B3)

Notice that the shift-share IV estimator is calculated with instrument zi defined at the location

level. β̂ ’s consistency and causal interpretation, then, rely on a relevance condition establishing

Cov(zi,∆x⊥i ) 6= 0 and on a exclusion restriction requiring Cov(zi,∆ε⊥i ) = 0. We can however

express the latter as an industry-level rather than location-level condition to highlight how iden-

tification of β depends on the shocks g j:

Cov(zi,∆ε
⊥
i ) = Ei[zi ·∆ε

⊥
i ]

= Ei[(∑ jsi, j ·g j) ·∆ε⊥i ] · (Ei(si, j)/Ei(si, j))

= ∑ js j ·g j ·φ j,

(B4)

where s j≡Ei(si, j) is the average share of industry j among locations and φ j≡Ei(si, j ·∆ε⊥i )/Ei(si, j)

is the average value of outcome ∆y⊥i in the absence of treatment ∆x⊥i
1, with larger weights being

assigned to locations most exposed to j. Therefore, the exclusion restriction for consistency of

β̂ in (B1) can be equivalently stated in industry terms as requiring that:

∑
j

s j ·g j ·φ j→ 0 (B5)

as the total number of locations I → ∞. This condition is trivially satisfied by the exogeneity

of labor shares, since then φ j = Ei(si, j ·∆ε⊥i )/s j = 0 for every j. However, as we discuss be-

low, (B5) can be achieved through other assumptions, meaning that Goldsmith-Pinkham et al.

(2018)’s argument for exogenous shares actually provides a sufficient but not necessary condi-

tion to establish orthogonality of the shift-share IV.

According to Borusyak et al. (2018), two assumptions need to be valid for the exclusion

restriction in (B5) to hold:

H1) “quasi-random shock assignment”: E[g j|φ j] = µ , for all j and some µ ∈ R;

H2) “many independent shocks”: E[(g j − µ) · (gk − µ)|φ j,φk] = 0, for all j and k 6= j, and

∑ j s2
j → 0 as I→ ∞.

1For an “untreated” observation, we would have ∆y⊥i =∆ε⊥i ; i. e., the residualized untreated outcome is determined

by the unobserved idiosyncratic factors.
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Hypothesis H1 states that no industry can be expected to experience a different shock than

the others given how it is distributed across locations. Because φ j is a weighted average of

location-specific unobserved factors, this condition essentially requires locations particularly

specialized in industry j to be unable to influence the expected magnitude of shock g j for the

whole country. In our study, this is likely addressed by the predicted trade flows in equation (6),

since they are proxies for the China-specific components of Brazilian exports and imports, as

illustrated in (4). That is, if the trade shocks we predict are truly uncorrelated with any Brazil-

specific characteristics, then it is reasonable to assume that E[g j|φ j] = E[g j] = µ , for every

industry j2.

Recall that we assumed in equation (B2) that the labor shares add up to 1 for every location.

This is not the case in our study because we consider only traded activities, which are the ones

directly exposed to the China shocks. If we were to also work with labor shares for non-traded

sectors, we would have gnon-traded = 0, implying that hypothesis H1 would only be satisfied if

E[g j|φ j] = 0 for all j. We do not have to impose this, however, because Borusyak et al. (2018)

show that this issue is accounted for as long as we control for the share of location i’s workers

that were initially employed in non-traded activities.

Hypothesis H2 requires shocks to be uncorrelated conditional on their respective industry-

weighted averages of local unobserved factors. This would be violated in cases where one

sector provided some input to another or if they produced complementary goods. Then, a shock

affecting either of them would likely trigger a disturbance on the other as well. Conveniently,

Borusyak et al. (2018) argue that H2 can be made less restrictive by allowing correlation within

clusters of industries, but not between them. This weaker version is the natural choice for our

study, since in converting from international trade codes to the activities listed in the Brazilian

Census, our main source for labor data, we had to considerably aggregate sectors.

Additionally, hypothesis H2 states that the Herfindahl index of average exposure to indus-

tries must fall to zero asymptotically, meaning that we cannot have many locations specializing

in a small set of industries. Note that this condition does not require every location to have a

uniform distribution of workers across all sectors. In fact, locations are allowed to have workers

specialized in few sectors as long as these are not always the same few; in other words, there

needs to be sufficient variation in specialization across regions, but not within them. In our sam-

ple with 5500 municipalities and 82 traded activities, the Herfindahl index is 0.0243, suggesting

that municipal workforce in 2000 was, on average, sufficiently dispersed across industries.

We must draw attention to a important caveat, however. Since identification hypotheses

H1 and H2 deal with stochastic elements and unobserved factors, they cannot be verified em-

2It is for this reason that we argued earlier that abstracting from the scale factor LB, j in (3) was a harmless simpli-

fication. If the predicted trade flows still carried influence from Brazil-specific factors, then scaling the shock by

LB, j could cause E[∆FBC, j/LB, j|φ j] 6= µ/LB, j, violating H1.
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pirically. Even though Borusyak et al. (2018) do suggest procedures to aid in assessing their

validity, our data limitations do not allow us to reliably implement them. To test H2, for in-

stance, they use a hierarchical model to decompose the variance of shocks g j in random effects

generated by different clusters of sectors. This is a data-demanding procedure that might not

be informative given our small number of industries: in their application, they reproduce Autor

et al. (2013)’s study in which 397 manufacturing sectors are tracked for two decades, while ours

has 82 traded sectors for one decade only. Hence, we must assume that our claims about the

exogeneity of the instrumented shocks, along with the industry aggregation implemented when

treating our data, suffice for the orthogonality of the shift-share IV estimator to hold.

C Alternative standard errors

Adão et al. (2018) propose the following estimator for standard errors in shift-share models:

AKM(β̂ ) =

√
∑ j ĥ2

j · R̂2
j

|∑i r̂i ·∆yi|
, with R̂ j = ∑

i
si, j · ∆̂ε i, (C1)

where ∆̂ε i are the second stage residuals from model (1), r̂i are the residuals of regressing an

instrument such as those in equation (7) on WWW i, and ĥ j are the coefficients of regressing r̂i on the

set of shares si, j. They also present a modified version of this estimator, where ∆̂ε i is obtained

from a model estimated without the variables of interest; i. e., restricted to the hypothesis that

they have no effect on ∆yi. The reasoning behind this is that, similarly to inference with geo-

graphic clusters, the standard errors estimated with (C1) might still be too small when there are

few clusters. So, if the variables of interest are relevant to explain ∆yi, the restricted standard

errors will be higher due to larger residuals.

In our study, estimating these standard errors requires some thought on what values to input

in the formula above, because we are interested in two shift-share variables (XD and IS) instead

of one, as in Adão et al. (2018). We compute r̂i for each of China’s “demand for exports” and

“supply of imports” shocks by estimating:

ivISi =WWW ′iδδδ
IS +ψ

IS · ivXDi + rIS
i

ivXDi =WWW ′iδδδ
XD +ψ

XD · ivISi + rXD
i .

(C2)

That is, instead of regressing an instrument solely on WWW i, we control for the other instrument as

well. As a check, we also fitted the instruments on WWW i alone, thus following Adão et al. (2018)

to the letter, which caused the estimated standard errors to be slightly smaller than the values

we present below.

We applied both of their standard error estimators to our main results and now discuss

how they differ from the cluster-robust standard errors we used throughout our study. For

deforestation of the Amazon, in table C1, the new standard errors are indeed higher than most
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of those in table 2. In fact, “AKM-0”, the standard error estimate obtained under the hypothesis

that the shocks are irrelevant, removes all statistical significance of XD’s coefficient in the

model without the inclusion of protected areas or the share of workers in commodity sectors as

controls. For deforestation of the Cerrado, however, “AKM” is actually much smaller than the

cluster-robust standard error, making XD’s effect negative and highly significant in both models

3 and 6, as shown in table C2. In an analogy to what can occur inside geographical clusters,

this result possibly reveals a negative correlation between municipalities through the activities

they specialize in.

Oddly, the same happens in table C3, where we consider mortality by the first group of

pollution-related illnesses. The “AKM” standard errors in panel A prove to be smaller and

reinforce the pattern we discussed above, with positive effects on earlier ages which disappear

in older groups. Even in panel B, where we control for the share of workers in mining and

soybean farming, they make point estimates significant for children under one and five years

of age. “AKM-0”, on the other hand, seems to provide results closer to Adão et al. (2018)’s

premise, despite also being smaller than the cluster-robust estimates in some cases. In face of

these unexpected outcomes, we take a conservative stance and opt to keep our results with the

standard errors robust only to correlation within geographic clusters.
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Table C1: Standard error comparison - deforestation of the Amazon rainforest

(3) (5) (6)

2SLS 2SLS 2SLS

Import shock (IS) 0.218 -0.690 2.614

Microregional s. e. (4.644) (4.743) (3.819)

AKM s. e. (4.947) (5.338) (4.664)

AKM-0 s. e. (4.853) (5.071) (5.221)

Export shock (XD) -0.063 1.763 -0.018

Microregional s. e. (0.031)∗∗ (1.525) (0.032)

AKM s. e. (0.033)∗ (1.167) (0.034)

AKM-0 s. e. (0.057) (1.53) (0.036)

No. of munic. 738 738 738

No. of clusters 100 100 100

Mesoregion trends Y Y Y

County controls Y Y Y

% labor in main exports Y

% protected lands Y

Point estimates and microregional s. e. are those of columns 3, 5 and 6 of table 2. “AKM” and “AKM-0” are

obtained with Adão et al. (2018)’s estimator, given by equation (C1).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C2: Standard error comparison - deforestation of the Cerrado savanna

(3) (5) (6)

2SLS 2SLS 2SLS

Import shock (IS) 0.258 0.299 -0.360

Microregional s. e. (3.675) (4.654) (3.634)

AKM s. e. (2.735) (3.624) (2.717)

AKM-0 s. e. (3.128) (3.702) (3.209)

Export shock (XD) -0.081 -0.092 -0.107

Microregional s. e. (0.081) (3.548) (0.083)

AKM s. e. (0.019)∗∗∗ (0.689) (0.013)∗∗∗

AKM-0 s. e. (0.082) (0.647) (0.099)

No. of counties 1364 1364 1364

No. of clusters 169 169 169

Mesoregion trends Y Y Y

Munic. controls Y Y Y

% labor in main exports Y

% protected lands Y

Point estimates and microregional s. e. are those of columns 3, 5 and 6 of table 3. “AKM” and “AKM-0” are

obtained with Adão et al. (2018)’s estimator, given by equation (C1).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C3: Standard error comparison - Mortality due to pollution-related illnesses

(1) (2) (3) (4) (5) (6)

Aged < 1 Aged < 5 Aged 5-9 Aged

10-19

Aged

20-39

All ages

Panel A
Import shock (IS) -0.193 -0.228 0.022 -0.036 -0.067 -0.088

Microregional s. e. (0.369) (0.391) (0.049) (0.077) (0.078) (0.702)

AKM s. e. (0.241) (0.249) (0.046) (0.053) (0.073) (0.454)

AKM-0 s. e. (0.24) (0.249) (0.04) (0.044) (0.059) (0.436)

Export shock (XD) 0.074 0.069 0.008 -0.008 -0.001 0.077

Microregional s. e. (0.027)∗∗∗ (0.028)∗∗ (0.005)∗ (0.004)∗∗ (0.004) (0.035)∗∗

AKM s. e. (0.004)∗∗∗ (0.003)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.001) (0.005)∗∗∗

AKM-0 s. e. (0.065) (0.061) (0.007) (0.006) (0.001) (0.069)

Panel B: controlling for % of workers in mining and soybeans

Import shock (IS) -0.202 -0.235 0.022 -0.035 -0.066 -0.087

Microregional s. e. (0.375) (0.397) (0.049) (0.078) (0.078) (0.713)

AKM s. e. (0.275) (0.283) (0.052) (0.061) (0.085) (0.515)

AKM-0 s. e. (0.275) (0.285) (0.045) (0.05) (0.068) (0.496)

Export shock (XD) 0.216 0.180 0.005 -0.016 -0.019 0.049

Microregional s. e. (0.162) (0.179) (0.024) (0.039) (0.041) (0.287)

AKM s. e. (0.096)∗∗ (0.080)∗∗ (0.019) (0.024) (0.021) (0.133)

AKM-0 s. e. (0.123)∗ (0.113) (0.018) (0.026) (0.024) (0.145)

Point estimates and microregional s. e. are those of table 5. “AKM” and “AKM-0” are obtained with Adão et al.

(2018)’s estimator, given by equation (C1).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01


	Introduction
	The China shock
	Brazil's exposure to China
	This study

	Empirical strategy
	Measuring exposure to trade
	A proper China shock
	Identification with shift-share instruments

	Interpreting the estimates
	Inference

	Data
	Employment and socioeconomic characteristics
	International trade
	Deforestation of the Amazon rainforest and the Cerrado savanna
	Mortality

	Results
	Effects on deforestation
	Effects on mortality

	Conclusions
	Additional figures and tables
	Identification hypotheses of the shift-share IV
	Alternative standard errors

