Setor elétrico: como precificar a água em um cenário de escassez?

Preparado para:

Instituto Escolhas

Novembro de 2019

RELATÓRIO FINAL
Sumário

1 Introdução/Motivação .. 1
 1.1 A água para o setor elétrico .. 2
 1.2 Alteração climática ... 6
2 Estudos de caso .. 13
 2.1 Bacias dos rios Jaguaribe e São Francisco .. 13
 2.2 Bacia do rio Xingu ... 14
3 Metodologia ... 16
 3.1 Avaliação dos atributos ... 17
 3.2 Avaliação da cobrança pelo uso da água .. 19
4 Levantamento de Dados ... 23
5 Avaliação do valor da água para irrigação ... 25
6 Avaliação das fontes de geração Termoelétrica e usos da água ... 29
 6.1 Termoelétricas e o uso de água na Bacia do Rio São Francisco .. 32
 6.2 Termoelétricas e o uso de água na Bacia do Rio Jaguaribe ... 35
 6.3 Proposta para cobrança do uso da água para geração termoelétrica ... 36
7 Avaliação de impacto para a geração hidrelétrica ... 43
 7.1 UHE Belo Monte .. 43
 7.2 São Francisco .. 45
8 Instrumentos de gestão e Outorgas .. 47
9 Avaliação dos resultados de conflitos e estudos de caso ... 49
 9.1 Custo da água para agricultura .. 49
 9.2 Resultados do custo da água para a geração termoelétrica .. 49
 9.3 Caso do São Francisco produção hidrelétrica x irrigação ... 53
 9.4 O caso da UHE Belo Monte ... 55
10 Reflexões - workshop .. 57
11 Conclusões e recomendações .. 68
12 Referências ... 73
13 Anexo Instrumentos de gestão e de outorgas ... 76
 13.1 Abordagens da gestão dos recursos hídricos .. 76
 13.2 Casos e cenários futuros .. 82
 13.3 Cobrança e outorga de água ... 84
Lista de Figuras

Figura 1 - Evolução da energia armazenada do SIN 2012 - 2014 .. 3
Figura 2 - Triênios de energia afluente (SIN) do registro histórico em ordem crescente 4
Figura 3 - Região 1 .. 8
Figura 4 - Região 2 – Fonte GT Metodologia CPAMP nº 05-2019CPAMP 8
Figura 5 - Energia Natural Afluente do SIN entre 2013 e 2018 GT Metodologia/CPAMP 9
Figura 6 - Retiradas da água no rio São Francisco ... 10
Figura 7 - Vazões e precipitações médias na UHE Sobradinho (1992-1997) 10
Figura 8 - Vazões e precipitações médias na UHE Sobradinho (2012-2017) 11
Figura 9 - Decreto nº 32.159/2017 .. 14
Figura 10- Arranjo geral das obras ... 15
Figura 11 - Atributos ... 18
Figura 12 - Custos de oportunidade da água para a irrigação .. 21
Figura 13 – Retirada de água para irrigação – Bacia do rio Jaguaribe. .. 25
Figura 14 - Valor da água demandada para a produção agrícola nas sub-bacias do Jaguaribe 28
Figura 15 - Valor da água demandada para a produção agrícola nas sub-bacias do São Francisco ... 29
Figura 16 - Participação das fontes na expansão de oferta de energia segundo PDE 2026 30
Figura 17 - Usinas termoelétricas no EUA e suas falhas de operação 31
Figura 18 - Localização das usinas termoelétricas por sub-bacias do rio São Francisco. 33
Figura 19 - Uso de água no processo de cogeração com bagaço de cana-de-açúcar 34
Figura 20 - Localização de Castanhão e termoelétricas de Pecém no Nordeste Oriental 35
Figura 21 - Balanço quantitativo da bacia do Rio Jaguaribe ... 37
Figura 22 - Balanço quantitativo da bacia do Rio São Francisco ... 37
Figura 23 - Valor do PPU, considerando captação e lançamento. Fonte: AGEVAP, 2018 39
Figura 24 - Hidrogramas ecológicos da UHE Belo Monte liberados na Barragem de Sítio Pimental ... 44
Figura 25 - Perda de garantia física decenal nas UHEs do Nordeste 46
Figura 26 - Custo de oportunidade da água no Jaguaribe e São Francisco 49
Figura 27 - Custo da água para diversos cenários de CMO das hidrelétricas do São Francisco 54
Figura 28 - Hidrogramas de consenso e os pulsos de três meses proposto ..55
Figura 29 - Perdas de energia e impactos econômicos na UHE Belo Monte...56
Figura 30 - Distribuição espacial dos postos hidrométricos na bacia do São Francisco63
Figura 31 - Vazões na bacia do rio Corrente..65
Figura 32 - Vazões na bacia do rio Grande..65
Figura 33 - Vazões na bacia do rio Urucuia..65
Figura 34 - Restrições de vazão a jusante da UHE Sobradinho. Fonte: ANA/ONS/ MMA........69
Figura 35 - Mercado de água australiano...83
Figura 36 - Valor da produção e usos da água na bacia MDB – Austrália..83
Figura 37 - Projeto de lei para implantação de um mercado de água..84
Lista de Quadros

Quadro 1 - Aumento percentual do uso consuntivo de água nas bacias..14
Quadro 2 - Indicador do nível de criticidade de estresse hídrico ..22
Quadro 3 - Base de dados utilizados no projeto..23
Quadro 4 - Produção agrícola na bacia do Jaguaribe ..26
Quadro 5 - Produção agrícola na bacia do São Francisco ...27
Quadro 6 - Coeficientes de demanda e consumo de água das usinas de geração termoelétricas32
Quadro 7 - Termoelétricas em operação por tipo de combustível e sistema de resfriamento...33
Quadro 8 - Usinas termoelétricas previstas por tipo de combustível e sistema de resfriamento ...34
Quadro 9 - Termoelétricas na bacia do São Francisco e nível de criticidade hídrico.39
Quadro 10 - Valores de cobrança do uso da água em países membros da OECD.........................40
Quadro 11 - Valores propostos de cobrança da água para térmicas na bacia do Jaguaribe........42
Quadro 12 - Valores propostos de cobrança da água para térmicas na bacia do São Francisco. ...42
Quadro 13 - Geração eletricidade (MWh) da usina PECEM segundo ONS (2016-2018)..............50
Quadro 14 - Demanda de água e custo da água por nível de criticidade para a Região Nordeste ..52
Quadro 15 - Disponibilidade de dados hidrométricos na bacia do São Francisco.........................64
1 INTRODUÇÃO/MOTIVAÇÃO

No senso comum, a noção de “conflito”, frequentemente, remete à ideia de desajuste, desacordo, desarmonia, desequilíbrio e demais denominações que sempre indicam que “algo” não funciona como esperado e, nesses termos, está associada a um evento negativo. No caso dos recursos hídricos, esse efeito negativo se dá tanto pela escassez como pelo excesso (nas grandes cheias).

As formas de uso da água e dos ecossistemas (sua produção, manutenção e diversidade de usos possíveis: geração de energia elétrica, irrigação, navegação, pesca, lazer) e a complexidade de suas interações engendram intensos conflitos em torno de sua apropriação. Definitivamente, a água é um recurso estratégico, econômico e político, cujo controle, acesso e uso assumem enorme importância para as sociedades.

O debate entre os diferentes segmentos sociais e a pressão dos movimentos sociais influenciou a agenda da Assembleia Nacional Constituinte, expondo que os conflitos e a exacerbação do domínio privado sobre os recursos hídricos não são fenômenos tão simples de regular. Este debate na Constituição Federal de 1988 provocou alterações significativas sobre as formas de apropriação dos recursos hídricos, extinguindo o seu domínio privado e considerando os corpos d’água como de domínio público. As controvérsias emergentes desse debate inspiraram a formulação em 1997 da Lei nº 9.433, que instituiu a Política Nacional de Recursos Hídricos e criou o Sistema Nacional de Recursos Hídricos.

Nesse contexto, o reconhecimento da bacia hidrográfica como unidade territorial de planejamento e gestão domina as formas de apropriação dos recursos hídricos, com a responsabilidade de ordenar o conflito, impondo novas regras. Como princípio básico das novas formulações está a proposição de “asegurar à atual e às futuras gerações a disponibilidade de água de qualidade; utilizar racionalmente e integradamente os recursos hídricos, com vistas ao desenvolvimento sustentável e prevenir contra eventos hidrológicos críticos de origem natural ou decorrentes do uso inadequado dos recursos naturais, bem como defender as populações e o ambiente na impossibilidade de evitar tais eventos”. Adicionalmente, como instrumento de gestão, foram estabelecidos (i) a outorga de direito de uso de recursos hídricos; (ii) a cobrança pelo uso da água; (iii) o enquadramento dos corpos d’água em classes de uso; (iv) o Sistema Nacional de Informações sobre Recursos Hídricos; e (v) o Plano Nacional de Recursos Hídricos.

- Comitês de Bacia: fóruns democráticos para os debates e decisões sobre as questões relacionadas ao uso das águas da bacia hidrográfica;
- Agências de Bacia: braços executivos do Comitê ou de mais de um Comitê, que recebem e aplicam os recursos arrecadados com a cobrança pelo uso da água na bacia; e
• Jurisdição pública federal exercida pela Agência Nacional de Águas, autarquia especial atualmente vinculada ao Ministério do Desenvolvimento Regional (MDR) – que assumiu as funções de órgão gestor dos recursos hídricos de domínio da União.

Mesmo com um instrumento tão moderno e democrático na gestão de recursos hídricos os problemas de conflitos de uso da água começaram a surgir. Mesmo quando se sabe que dispomos de 12% da água doce do planeta. Então, por que e onde esses conflitos aparecem? Como podem ser publicadas notícias como a da revista Época de 24 de março de 2014 com o título: “O Brasil pede água”?

A reportagem foi feita depois da crise de água e energia que antecedeu as eleições de 2014. O articulista perguntava como um país que dispõe de grandes quantidades de água doce do planeta passa por crises desse porte. Na época as duas maiores metrópoles do país disputavam 5 m3/s que seriam captados no rio Paraíba do Sul para São Paulo. Essa bacia tem sofrido superexploração e suas águas estão contaminadas por efluentes domésticos e industriais sem tratamento. Pode-se concluir, após uma análise mais acurada que não existia crise de recursos hídricos e sim de boa gestão, isto é, um melhor controle da água, seus excessos e deficiências. Mas nesse estudo vamos analisar com um foco da água para o setor elétrico.

1.1 A água para o setor elétrico

A energia gerada por nossas hidrelétricas ao longo dos anos mostra a grande sazonalidade das vazões em um mesmo ano e ao longo dos anos, e como são importantes os reservatórios de regularização de vazões. Outro aspecto desse conflito pela água refere-se à sua localização. Nossa maior disponibilidade de água situa-se na região Norte, mas a população e os usos da água mais intensos situam-se na região Sudeste.

Aparentemente, São Pedro tem nos castigado de maneira muito severa nos últimos anos, particularmente as regiões Nordeste e Sudeste. Nosso sistema neste caso poderia ser considerado como um avião que está enfrentando valentemente um furacão e, que, portanto, mostraria que foi bem construído? As dificuldades atuais seriam conjunturais: uma vez passado o furacão (isto é, uma vez que o regime hidrológico volte ao normal) teremos o chamado “céu de brigadeiro, com preços baixos, investimentos renovados etc.”?

No entanto, se for mostrado que as condições hidrológicas não foram excepcionalmente severas a conclusão seria a oposta: o sistema de geração estaria frágil, ao invés de robusto. Neste caso, os problemas não seriam conjunturais, e sim estruturais: para voltar à normalidade, seria necessário identificar as causas da fragilidade e corrigir o problema, por exemplo, reforçando a geração e/ou transmissão.

A primeira pergunta é, naturalmente, por que analisar essa notícia de 2014? Nessa ocasião tanto o rio São Francisco, como outras bacias mostravam crises hídricas severas, e o que aconteceu? Era mesmo um furacão passageiro ou tínhamos problemas estruturais?
Pode-se mostrar, a partir da avaliação dos próprios dados do Operador Nacional do Sistema Elétrico (ONS) que neste período passamos do *melhor armazenamento* da história, em janeiro de 2012, para o *pior armazenamento*, em dezembro de 2014, como se pode verificar na Figura 1 que mostra a energia armazenada no sistema.

Se os reservatórios estivessem em níveis mais típicos, o fato de o mês de janeiro de 2015 ter sido o mais seco da história não seria agradável, porém não causaria tanta preocupação, pois poderíamos utilizar nossa “poupança hídrica”. No entanto, o nosso saldo hídrico estava “zerado”, qualquer seca, mesmo de alguns meses, pode ser a (falta de) gota d’água que arrisca derrubar o sistema.

![Figura 1 - Evolução da energia armazenada do SIN 2012 - 2014](image)

Vamos agora à comparação da energia hídrica afluente durante o triênio 2012-2014 com as demais afluentes do histórico (triênio 1931-1933; 1932-1934, e assim por diante). A figura a seguir mostra os 81 triênios de energia afluente do registro histórico, representadas em termos de porcentagem da média histórica, e colocados em ordem crescente. É importante ressaltar que a fonte dos dados acima é oficial (ONS) e pública.
Figura 2 - Triênios de energia afluentes (SIN) do registro histórico em ordem crescente

Observa-se na Figura 2 que o triênio 2012-2014 está bem longe de ser o pior do histórico, pois 15 dos 81 triênios registrados (cerca de 20%) foram mais secos do que o passado recente. Em outras palavras, um em cada cinco triênios foi mais seco do que 2012-2014.

Observa-se na figura acima que o biênio 2013-2014 continua muito longe de ser o pior histórico, pois aparece na 24ª posição da ordenação. Retomando a metáfora aeronáutica, os fatos mostram que as afluentes nos últimos anos foram apenas uma “turbulência moderada”, e não um furacão inédito.

O que isto nos mostra? Aparentemente o ONS tem tido dificuldade de operar os reservatórios. Então o que está acontecendo?

Algumas hipóteses têm sido levantadas. As vazões naturais afluentes que são aquelas que seriam consideradas nas bacias sem a influência dos reservatórios, são calculadas por meio de um balanço hídrico. Nessa avaliação não se medem as vazões turbinadas ou as vazões defluentes diretamente, e dessa forma a estimativa é feita indiretamente, e esse cálculo depende de alguns fatores, tais como, precipitação na bacia, usos consuntivos na bacia incremental, volume útil do reservatório (curva cota-área-volume) eficiência do equipamento eletromecânico, e curva-chave do canal de fuga. Esses fatores foram denominados no setor elétrico como fatores de fricção.

Um deles não é controlável: a precipitação. Os demais podem ser continuamente aferidos uma atividade absolutamente necessária para que se possa dispor de um balanço hídrico mais preciso. No entanto, aparentemente não o são como veremos mais adiante.
ONS preocupado com a operação desses reservatórios fez recentemente um excelente trabalho de investigação desses fatores. Foi comprovado que as regiões Sudeste, Centro-Oeste e Nordeste, em particular, vem experimentando as maiores alterações. As bacias localizadas nas regiões centrais do Brasil nos últimos cinco anos tiveram vazões médias cerca de 50% da vazão média de longo termo (MLT). Enquanto as bacias da região Sul têm experimentado aumento de vazões. E na Amazônia as vazões têm estado dentro da média esperada.

Assim, o quadro crítico já mostrado da bacia do rio São Francisco também é observado nas bacias vizinhas à do rio São Francisco:

- Bacia do rio Tocantins: série histórica da Usina Hidrelétrica (UHE) Estreito Tocantins com média de 83,4% MLT entre 1993 e 2017;
- Bacia do rio Paranaíba: série histórica da UHE Itumbiara com média de 86,6% MLT entre 1993 e 2017;
- Bacia do rio Grande: série histórica da UHE Porto Colômbia com média de 87,7% MLT entre 1993 e 2017; e
- Bacias dos rios Doce (UHE Mascarenhas), Mucuri (UHE Santa Clara MG), Jequitinhonha (UHE Itapébi) e Paraguaçu (UHE Pedra do Cavalo) com média, respectivamente, de 80,1% MLT, 78,2% MLT, 66,1% MLT e 69,2% MLT entre 1993 e 2017.

Com tantas alterações o ONS começou a tentar identificar as possíveis causas, tais como:

- Usos consuntivos oficiais subestimados;
- Alterações nos usos dos solos nas bacias hidrográficas; e
- Alterações no regime pluviométrico.

E um estudo recente feito pelo ONS procurou focar na alteração das chuvas, que parece ser o principal motivador dessas mudanças, pois o uso dos solos da região do São Francisco e região central do Brasil já foi alterada há muitos anos em uma área de predominância de vegetação de cerrado ou semi-árido. E os usos da água, pelos últimos dados oficiais da Agência Nacional de Águas (ANA), não indicavam ser o esse o fator mais relevante em termos quantitativos.

1 Vazão Média de Longo Termo – MLT é a média das vazões de um rio considerando-se todo o histórico de vazões disponíveis do corpo hídrico.
1.2 Alteração climática

Então o que aconteceu com o clima? O Brasil, por suas dimensões e localização geográfica está sujeito a vários sistemas de circulação meteorológicos de larga escala, tais como os de meso-escala como os sistemas frontais, as frentes frias e quentes, e aqueles associados a Zona de Convergência do Atlântico Sul (ZCAS).

Os meses de verão (dezembro, janeiro e fevereiro) apresentam os maiores volumes de precipitação nas regiões Sudeste e Centro-Oeste, estando associados à ZCAS. Estas zonas, onde se originam os ventos alísios, transporta ar quente e úmido necessário para a formação das chuvas desde as regiões amazônicas até o litoral da região Sudeste, passando pelo centro do Brasil.

A parte norte do Nordeste também apresenta elevados volumes de precipitação associados ao posicionamento da Zona de Convergência Intertropical (ZCIT).

Esses sistemas podem, dependendo do ano e das condições de gerais de circulação atmosférica, causar bloqueios por exemplo a passagem de frentes frias, que são capazes de ficar estacionadas em uma parte de nosso território e causar mais chuvas na região Sul do Brasil, e menos precipitação na região central do Brasil.

Outro sistema que tem sido muito relevante na formação das chuvas e sua distribuição no Brasil é o fenômeno El Niño. Geralmente quando é muito intenso, provoca mais chuva na região Sul do Brasil e menos volume de precipitação na região Nordeste.

Um índice climático amplamente estudado é o relacionado a esse fenômeno atmosférico-oceânico e que caracteriza as anomalias positivas (El Niño) ou negativas (La Niña) da Temperatura da Superfície do Mar (TSM) no Oceano Pacífico Equatorial. A anomalia ou oscilação da TSM é a diferença entre os valores correntes observados em relação ao histórico, sendo essa positiva/negativa com a TSM acima/abaixo da média histórica.

Em condições normais a TSM é maior na costa da Ásia (movimento ascendente) do que na costa da América do Sul (região de subsidência), acompanhando a circulação da latitudinal da terra (a denominada Célula de Walker). Nos períodos de El Niño a região central do Pacífico Equatorial se aquece, passando a ter movimentos ascendentes e deslocando a região de subsidência da costa da América do Sul para leste, sobre o Norte/Nordeste brasileiro. Esse movimento provoca uma alteração da circulação em nível latitudinal, passando a haver subsidência no Norte (região amazônica) e Nordeste brasileiro. A

2 El Niño é um fenômeno atmosférico-oceânico caracterizado por um aquecimento anormal das águas superficiais no Oceano Pacifico Tropical, e que pode afetar o clima regional e global, mudando os padrões de vento a nível mundial, e afetando assim, os regimes de chuva em regiões tropicais e de latitudes médias.

3 La Niña representa um fenômeno oceânico-atmosférico com características opostas ao EL Niño, e que se caracteriza por um esfriamento anormal nas águas superficiais do Oceano Pacífico Tropical.
ocorrência desse fenômeno traz como resultado um aumento da precipitação na Região Sul e períodos de estiagem na faixa Norte/Nordeste do Brasil.

A caracterização do *El Niño* geralmente é baseada na análise do fenômeno considerando a sua intensidade, nesse caso utilizando o Índice Multivariado do *El Niño* Oscilação Sul (MEI, do inglês *Multivariate Enso Index*). O MEI pode ser definido como o índice numérico que integra a ação de diferentes fatores que caracterizam o fenômeno, oscilando entre valores positivos (*El Niño*) e negativo (*La Niña*). Esse índice considera na sua composição a pressão reduzida ao nível do mar, a temperatura do ar, a temperatura da superfície do mar, a nebulosidade e as componentes do vento em superfície (zonal e meridional).

A PDO é um fenômeno com variação em escala climática, ou seja, apresenta uma configuração com variações de longo prazo, cerca de 20 anos duração. É dividida em fases positivas (anomalia positiva) e negativas (anomalia negativa), referentes as variações das TSM no Oceano Pacífico. A PDO positiva é conhecida por aumentar o número de ocorrências e intensidade do *El Niño* e uma diminuição do *La Niña*.

Assim os períodos de baixas precipitações no Nordeste e na região central do Brasil poderiam ser explicados em parte pela influência maior ou menor do fenômeno *El Niño*. Mas nesse trabalho a ONS verificou que apenas a influência desse fenômeno não explicava esse recente e longo período de estiagem na bacia do rio São Francisco.

Os resultados das análises feitas indicam que as vazões nas bacias do Sul estão mais relacionadas com o Índice Multivariado do *El Niño* Oscilação Sul (*Multi Variate Enos Index*), sugerindo que a intensidade do fenômeno *El Niño* tem elevado as vazões no Sul no histórico recente.
A PDO (*Pacific Decadal Oscillation*) apresentou uma boa relação com as séries de vazões de bacias das regiões Sudeste e Nordeste, entretanto a fase positiva da PDO observada desde 2014 deveria favorecer o aumento das vazões nessas bacias, o que não foi verificado. A redução das vazões nas bacias das regiões Sudeste e Nordeste no histórico recente parecem ter sido mais afetadas pela TSM do Oceano Atlântico (AMO) do que pela fase da positiva da PDO.

Nessa busca, o ONS encontrou uma correlação entre essas oscilações com as vazões ou energias naturais afluentes (ENAs) do histórico disponível, como se pode verificar na Figura 3 e na Figura 4 a seguir. A análise dos resultados mostrou duas regiões de características hidrológicas bem distintas: Região 1 (regiões Nordeste e uma parte do Sudeste), em que se observam vazões abaixo da média desde meados da década de 90; e Região 2 (Região Sul), com vazões acima da média a partir de meados da década de 70.

Figura 3 - Região 1

Figura 4 - Região 2 – Fonte GT Metodologia CPAMP nº 05-2019CPAMP
A Figura 5 a seguir ilustram as regiões e os valores de percentagem da MLT nas principais bacias do SIN nos anos mais recentes (2013-2014), reforçando o argumento de que houve uma sensível redução das vazões afluentes nas bacias da região central do Brasil, cabeceiras do rio Paraná, cabeceiras do rio Tocantins e principalmente na bacia do rio São Francisco.

![Figura 5 - Energia Natural Afluente do SIN entre 2013 e 2018 GT Metodologia/CPAMP](image)

Esses resultados mostram uma estreita correlação entre os índices climáticos oriundos de efeitos da circulação geral da atmosfera e de eventos meteorológicos de larga escala. Evidentemente estudos mais aprofundados deverão ser feitos, além da averiguação de sua previsibilidade, e, eventualmente, da não estacionaridade das séries hidrológicas nessas bacias.

As mudanças climáticas devem exacerbar ainda mais esse cenário. Logo, é possível concluir que os conflitos pelo acesso e uso da água em regiões que já sofrem com esses problemas podem ser intensificados, bem como, em regiões que historicamente não haviam sofrido com disputas pela água possam vivenciar tal situação em decorrência das alterações dos regimes de chuva e do crescimento populacional e econômico.

Além dessas alterações foi verificado pela ANA um aumento significativo do uso da água para irrigação na bacia do rio São Francisco. A Figura 6 a seguir mostra a curva de retiradas de água para diversos usos.
Esse cenário do São Francisco tem se verificado em quase todas as regiões do Brasil, mas não com um crescimento tão acentuado (mais de 500%).

Uma observação no histórico de chuvas médias e vazões naturais na bacia do rio São Francisco na UHE Sobradinho, como exemplo, mostra uma forte correlação entre essas variáveis (Figura 7 e Figura 8). Aparentemente houve uma diminuição nas precipitações na região Nordeste, como avaliado pelo ONS. Buscou-se esse exemplo pois esse é o grande reservatório de regularização dessa bacia.
Figura 8 - Vazões e precipitações médias na UHE Sobradinho (2012-2017)

Mas essa seria a única razão? Não haveria necessidade de uma maior investigação? Entendemos que sim, pois os demais itens levantados para explicar a redução das energias naturais afluentes deveriam e poderiam ser melhor conhecidos, acompanhados e controlados (como o assoreamento de reservatórios), diferentemente da precipitação que não se pode prever ou controlar.

A conferência The Water, Energy and Food Security Nexus Solutions for the Green Economy realizada em Bonn, Alemanha, em 2011, bem como a Conferência das Nações Unidas sobre Desenvolvimento Sustentável (Rio+20), realizada no Rio de Janeiro, em 2012, foram os ambientes nos quais começaram a se estabelecer as bases conceituais para uma nova abordagem destinada a lidar com essas diferentes pressões nesses diversos setores relacionado ao uso da água. Segundo esse conceito, a provisão de água pode ser alcançada por meio de uma abordagem que integra gestão e governança entre setores e escalas. Uma abordagem de nexo também pode apoiar a transição para uma Economia Verde, que visa, entre outras coisas, a eficiência no uso de recursos e maior coerência política.

As soluções não emergirão a partir de apenas uma visão ou linha de raciocínio e uma abordagem em especial merece destaque: a econômica. Tal abordagem não se propõe superior nem independente as demais formas de analisar o problema da escassez hídrica. No entanto, apresenta conhecimento relevante e necessário para a busca das respostas mais adequadas. São soluções que avaliam os diversos aspectos intervenientes, tais como geografia, cultura, distribuição de renda, políticas existentes e das instituições que cercam determinado corpo d’água, bacia hidrográfica ou região.

Essa introdução mostra a relevância do tema, mesmo num país com a abundância de água do Brasil. Os conflitos de uso já começam a aparecer em algumas regiões, como se verá mais à frente. A água é insumo para todas as atividades humanas: gerar energia, produção agrícola, produção industrial, abastecimento de cidades e áreas rurais, e para manter os ecossistemas de uma bacia. A boa gestão da água deve abranger e compatibilizar todos esses usos para que sua exploração seja sustentável.
Por esse motivo esse estudo procura responder como se dá o consumo e uso da água em alguns casos ou bacias hidrográficas brasileiras.
2 ESTUDOS DE CASO

A gestão da água se torna mais relevante e eficiente em cenários de escassez. É num quadro como esse que se consegue perceber melhor o seu valor. Alguns usos da água são não consuntivos, isto é, o recurso é devolvido ao rio na mesma quantidade e qualidade após seu uso, tal como nas hidrelétricas e lazer. Outros são consuntivos, isto é, após seu uso a água volta para a bacia hidrográfica em quantidade menor ou em qualidade pior. É o caso da irrigação e o consumo humano ou industrial.

Algumas formas de geração de energia elétrica são não consuntivas como nas hidrelétricas, e outras consomem ou usam uma parte da água que retiram para sua operação, como as termoelétricas. Outras usam muito pouco da água na sua operação como as usinas fotovoltaicas.

Como se pretendia avaliar e valorar o insumo da água para gerar energia elétrica se buscou focar em algumas bacias hidrográficas que pudessem representar melhor um possível conflito com o insumo água para geração elétrica. Pelo que se apresentou na introdução as bacias do Nordeste são aquelas que merecem a maior atenção, por seu potencial hidrelétrico e termoelétrico instalado e pelo uso consuntivo para o setor agrícola.

Nesse ponto é importante pontuar que o maior uso consuntivo da água é para a irrigação, notadamente, num clima semiárido como o dessa região. Os demais usos são relativamente pouco importantes, e por esse motivo esse será o uso da água avaliado. Além disso o uso para consumo humano é prioridade, e, portanto, não será usado como aspecto conflitante com a geração elétrica.

Assim as bacias selecionadas para estudo de caso foram as do rio Jaguaribe e do São Francisco. Ambas têm importante uso da água para irrigação, e geração termo elétrica e hidrelétrica.

Mas um outro uso é muito importante numa bacia hidrográfica: o ambiental. Já existem vários casos de restrições ambientais de vazões a serem mantidas nos rios, tanto para hidrelétricas quanto termoelétricas. E para avaliar esse conflito selecionou-se a bacia do rio Xingu, onde está instalada a UHE Belo Monte (11.233,1 MW) como estudo de caso para o insumo água para geração e manutenção da vida aquática e de populações ribeirinhas. Esse caso foi escolhido por seu porte e por sua relevância para o SIN.

2.1 Bacias dos rios Jaguaribe e São Francisco

Como se pode verificar e mostrar na bacia do rio São Francisco e na região do Nordeste, com destaque para a bacia do rio Jaguaribe, houve uma acentuada redução nas vazões naturais afluentes. A seguir demonstramos o que já está ocorrendo nessas regiões no que concerne ao uso do solo e consequentemente para o uso da água para irrigação. Verificamos pelos recentes levantamentos da ANA (2019), já mencionados, que nessas bacias houve um aumento particularmente relevante nos usos consuntivos nos últimos 30 anos como se pode ver no quadro abaixo, com destaque para a irrigação:
<table>
<thead>
<tr>
<th>Bacia do rio Jaguaribe</th>
<th>Aumento dos usos consuntivos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vazão Total Retirada na Bacia</td>
<td>178</td>
</tr>
<tr>
<td>Vazão Retirada pela Irrigação</td>
<td>182</td>
</tr>
<tr>
<td>Bacia do São Francisco</td>
<td>Aumento dos usos consuntivos (%)</td>
</tr>
<tr>
<td>Vazão Total Retirada na Bacia</td>
<td>372</td>
</tr>
<tr>
<td>Vazão Retirada pela Irrigação</td>
<td>593</td>
</tr>
</tbody>
</table>

Além disso na bacia do Jaguaribe foi identificado um conflito de uso com a geração termoelétrica do Porto do Pecém, um exemplo claro e relevante para avaliação do insumo água para a geração elétrica.

Assim, essas duas bacias foram selecionadas para o estudo de caso, pela sua importância socioambiental e pelos conflitos já identificados.

Jaguaribe:
Conflito pelo uso de água.
Nexo água-energia-clima

Figura 9 - Decreto nº 32.159/2017

2.2 Bacia do rio Xingu

A UHE Belo Monte, localizada no rio Xingu, no estado do Pará, possui capacidade instalada de 11.233,1 MW e energia firme de 4.662,3 MW. E encontra-se localizada numa área denominada Volta Grande do rio Xingu, entre os paralelos 3°00’ e 3°40’S e os meridianos 51°30’ e 52°30’W.

O empreendimento possui um arranjo das estruturas conhecido como derivativo, pois compreende um barramento principal no rio Xingu (no Sítio Pimental), a cerca de 40 km a jusante da cidade de Altamira, de onde as vazões são derivadas por um canal para que a geração de energia possa ser realizada na Casa de Força Principal, no Sítio Belo Monte, a cerca de 9,5 km a jusante da localidade de Belo Monte, situada no município de Vitória do Xingu, favorecendo-se, desse modo, de uma queda com cerca de 90 metros (ELETROBRÁS, 2006).

Como a maior parte das vazões afluentes é desviada para o canal, é preciso manter uma vazão a jusante da barragem principal em Sítio Pimental para garantir os usos da água e a qualidade ambiental na calha natural do rio Xingu. Esse trecho que terá sua vazão natural reduzida é denominado de trecho de vazão...
reduzida (TVR). Esse é certamente o caso mais emblemático que se poderia estudar pelo porte da usina e pela dimensão do TVR. Essa vazão residual ou vazão ecológica definida nos estudos ambientais, é liberada por uma Casa de Força, situada junto a barragem de Sítio Pimental.

Resultantes dessa configuração foram formados dois reservatórios (Xingu e Intermediário) e o TVR de cerca de 100 km de extensão no rio Xingu a ser submetido a essa vazão residual, que será aproveitada para geração de energia em uma Casa de Força Complementar, localizada junto à barragem principal.

Esse empreendimento foi muito questionado na época de seu licenciamento, e ainda hoje passa por problemas para manter sua licença de operação. O Ministério Público tem movido ações para que se alterem algumas condicionantes da licença. Por se localizar na Amazônia, pelo seu porte e principalmente pelo arranjo das estruturas, foi discutido e decidido que essa usina seria avaliada nesse contexto de insumo de água (Figura 10).

Figura 10- Arranjo geral das obras
3 METODOLOGIA

Como já apresentado no estudo feito anteriormente pelo Instituto Escolhas/PSR, e amplamente divulgado – “Custos e Benefícios das Fontes de Geração Elétrica”, o maior desafio do suprimento de energia do setor elétrico é garantir o atendimento da demanda com confiabilidade, economicidade e sustentabilidade. No caso do Brasil, os leilões de energia nova do Ambiente de Contratação Regulada (ACR) formam o principal “motor” para a expansão da oferta de geração. O produto oferecido nesses leilões é um contrato de energia capaz de atender um volume em MWh/ano, distribuído ao longo dos meses.

No entanto, vimos que existem outros serviços adicionais ao suprimento puro de energia. Esse foco dos leilões apenas no serviço “energia” foi possível na ocasião do marco legal do setor, pela Lei nº 10.848/2004, devido à grande participação de usinas hidrelétricas com capacidade de armazenamento de água, as quais, por exemplo, se encarregavam de quase toda a modulação da ponta, um dos serviços possibilitados por esse tipo de geração. Isto é, as turbinas têm capacidade de acompanhar a curva de demanda nos horários de maior demanda e podem contar para isso com os seus reservatórios. Esse é um dos serviços não remunerados ainda.

Como a comparação entre as diferentes ofertas nos leilões é realizada apenas pelo preço da energia, as externalidades referentes a outros serviços – ou atributos – que cada fonte de geração pode prestar a um sistema de potência não são valoradas explicitamente. A presença de renováveis intermitentes (eólicas e solares fotovoltaicas) não havia começado, e a crise hídrica de 2001 havia passado com os novos investimentos em termoelétricas e linhas de transmissão.

Mas foi mostrado que aspectos ou externalidades podem afetar o preço final da energia tais como: subsídios e incentivos fiscais, financeiros e tributários adicionais dados aos geradores. Assim, o preço final dos leilões de energia não refletiria todos os custos e benefícios de cada fonte.

Esse fato tornou-se mais evidente com a profunda mudança da matriz de geração elétrica, com destaque para a geração termelétrica a gás natural, a entrada maciça de geração eólica e, mais recentemente, da energia solar. Esse acréscimo de outras fontes renováveis intermitentes fez as hidrelétricas atingirem seu limite de provisão de determinados serviços, considerando a configuração de geração e transmissão atual, que passaram a ser supridos por outros recursos.

Esse esgotamento sistêmico implicou na necessidade da operação das termelétricas do Nordeste para compensar a variabilidade da geração eólica. O resultado foi uma perda de eficiência na operação ener-

4 A crise hídrica de 2001 ou também conhecida como crise do apagão foi um período que houve uma diminuição das chuvas e que afetou o Brasil em 2001. Essa crise foi responsável por afetar o fornecimento e distribuição de energia elétrica no país durante o segundo mandato do presidente Fernando Henrique Cardoso e que foi oriunda do desinvestimento em geração e transmissão de energia elétrica e falta de planejamento energético.
gética do sistema, com custos de combustíveis fósseis muito elevados e um aumento igualmente significativo nas emissões de CO₂. Em resumo, o modelo atual simplificado de contratação da energia elétrica trouxe uma ineficiência para a economia/sociedade, e precisaria ser alterado.

Essas dificuldades acarretaram uma discussão polarizada – e confusa – sobre as fontes (por exemplo, alguns defendem a construção maciça de energia solar enquanto outros argumentam que é fundamental construir térmicas a gás operando na base) em vez de se discutir o melhor atendimento dos atributos por meio de um portfólio de fontes, coisa que a matriz elétrica brasileira Brasil sempre teve, e que continuará tendo se essas questões forem melhor abordadas.

3.1 Avaliação dos atributos

Uma das propostas metodológicas neste estudo segue a mesma utilizada no trabalho anterior (Escolhas/PSR- Custos e Benefícios das Fontes de Geração Elétrica 2018). Isto é, adotando-se o cálculo do custo total da geração por meio da valorização dos atributos de cada fonte de geração. No caso em pauta introduzindo-se o atributo custo da água e realizando uma decomposição para os valores da geração nos mesmos grupos de atributos já elencados acrescidos do custo ou um valor para a água:

1. Custos de Investimento (CAPEX) e Operação (OPEX): é utilizada a medida tradicional LCOE (Levelized Cost of Energy) como método de reaquisição dos valores necessários para a recuperação do investimento e de operação.

2. Serviços prestados pelo gerador além da produção de energia

 - Modulação e sazonalização: é a capacidade do gerador de atender o perfil horário de demanda ao longo do mês (modulação) e atender o perfil mensal da demanda ao longo do ano (sazonalização);
 - Robustez: é a capacidade do gerador de produzir energia acima do que seria requerido no despacho econômico. Constitui uma reserva de geração estrutural para o sistema; e
 - Confiabilidade: é a capacidade do gerador de injetar potência no sistema para evitar interrupção no fornecimento causada por falta de capacidade de geração devido a quebras nos geradores.

3. Custos de infraestrutura causados (ou evitados) pelo gerador

 - Rede de transmissão: representa a componente do custo de infraestrutura de transmissão ou distribuição para geradores conectados na rede de distribuição, que deve ser alocada a cada gerador;
 - Perdas: são as perdas ôhmicas na rede de transmissão;
 - Suporte de reativo: representa a componente do custo de infraestrutura de suporte reativo dos capacitores e reatores do sistema que deve ser alocada a cada gerador. Inclui o valor evitado da injeção de reativo dos geradores;
- Reserva probabilística de geração: representa a componente do custo da infraestrutura de equipamentos de resposta rápida, necessários para absorver as variações não previsíveis da demanda e produção renovável, que deve ser alocada a cada gerador; e
- Serviço de inércia: representa a componente do custo da infraestrutura de equipamentos com inércia para permitir o equilíbrio entre oferta e geração dentro da faixa de frequência operativa, a qual deve ser alocada a cada gerador.

4. Subsídios e isenções: representa o custo total pago pelo consumidor e/ou contribuinte devido aos diversos incentivos e isenções oferecidos aos geradores.

5. Custos ambientais: são os valores para a sociedade relativos à emissão de gases de efeito estufa de cada fonte de geração de energia elétrica.

Foi utilizada a mesma metodologia para a avaliação de cada um dos serviços – ou atributos – mencionada anteriormente. Essa metodologia considera a utilização de ferramentas computacionais que permitem a modelagem do sistema em detalhes.

\[\text{LCOE} \leftrightarrow \text{CAPEX, OPEX + CUSTO D'ÁGUA} \]
\[\text{Serviços da Geração} \leftrightarrow \text{Modulação/Sazonalização-Robustez-Confabilidade} \]
\[\text{Custos de Infraestrutura} \leftrightarrow \text{Rede de Tratamento-Suporte de Reativo-Reserva Probabilística-Serviço de Inércia} \]
\[\text{Subsídios e Incentivos} \leftrightarrow \text{Financeiros-Tributários-Encargos Setoriais} \]
\[\text{Ambientais} \leftrightarrow \text{Emissões de Gases de Efeito Estufa} \]

\text{Figura 11 - Atributos}

Nas simulações (probabilísticas) realizadas com os modelos SDDP consideraram-se aspectos que não são levados em conta atualmente nas ferramentas oficiais de planejamento da operação e expansão, tais como detalhamento horário, restrições para atendimento à demanda de ponta e para atendimento às restrições de reserva girante; detalhamento da rede de transmissão; e variabilidade na produção eólica e solar.

No caso do custo da água foi avaliado o custo ou valor de oportunidade do seu uso. A proposta é que, assim como foi feito para o cálculo dos valores relacionados a emissões de gases de efeito estufa (GEE), seja feito para água. Uma diferença fundamental que emerge, no entanto, é que o custo de oportuni-
dade da água tem uma característica diferente do preço do carbono e tem uma característica extremamente local, relacionada à bacia onde essa água está sendo retirada. Enquanto o preço do carbono pode ser considerado o mesmo em qualquer lugar do planeta, pois o local onde o CO₂ foi emitido é indiferente para seu efeito de aquecimento global.

O desafio aqui é saber calcular o valor para cada setor e decidir a forma de ponderação: de acordo com a demanda, com o consumo, com proporção de outorgas etc. Nesse caso teremos que decidir entre o consumo ou demanda. As outorgas não parecem um caminho razoável pois de modo geral no Brasil não se faz uma estimativa bem sustentada na sua fixação. Além da dificuldade de se obtê-las. Na prática, não se sabe se, havendo 1 m³ adicional de água, para qual usuário ela iria. Nesse caso consideramos que essa água deveria ir para o usuário marginal, isto é, se não for usada para geração elétrica iria para o usuário marginal.

Cabe destacar que nesse estudo se considerou que esse usuário marginal seria a irrigação, pois é o uso mais relevante, os demais, nas bacias selecionadas são pouco significativos em volume. Não se considera evidentemente o abastecimento de água de populações urbanas ou rurais, pois esse uso não é marginal e sim prioritário.

3.2 Avaliação da cobrança pelo uso da água

No caso do atributo água foi proposto o uso do conceito de custo de oportunidade de uma ação que é o valor da próxima possibilidade melhor que pode ser tomada.

Essa decisão foi tomada, principalmente, devido ao fato de o custo da água ser determinado para quantificar o real preço justo desse recurso escasso e finito, levando em consideração asseguranças hídricas, alimentar e energética. Assim como, propiciar o uso múltiplo das águas da bacia, gerando com isso, um grande grau de incerteza atrelado a esse valor. Já o custo de oportunidade da água pode ser calculado de acordo com o deslocamento de volumes de água que seriam utilizados por um usuário para outro por meio de mecanismos financeiros que busquem compensar o usuário que detinha a outorga daquele montante de água.

No caso da agricultura, como se verá, avaliaremos o valor da produção agrícola vinculado a água. Mesmo sendo usadas ao longo do texto como custo de oportunidade, no caso da agricultura o que se pretende mesmo é definir o valor da água, não necessariamente o seu custo.

O trabalho divide-se em dois pontos, o primeiro de acordo com o custo, ou seja, o valor da água para irrigação e o outro, o custo de oportunidade da água para a geração termelétrica, que serão detalhados a seguir.

Dentro desse contexto de valoração do atributo ou insumo água foram propostas duas alternativas:
• Usar uma média ponderada do valor da água demandada (R$/m³) de todos os demais setores usuários na bacia. O desafio aqui é saber calcular o custo de oportunidade da água para cada usuário. Na prática, não se sabe se, havendo 1 m³ adicional de água, para qual usuário ela iria; e

• Usar valores da cobrança do uso da água aplicados nos Comitês de Bacias Hidrográficas de acordo com o nível de criticidade característico da bacia (demanda d’água da bacia/disponibilidade hídrica).

É importante notar nesse ponto que estamos avaliando uma situação de crise hídrica, isto é, se faltar água ou ela for escassa, quanto ela vale para cada setor e como ela deveria ser utilizada. Não existe metodologia ou aplicação de alguma diretriz para essa cobrança em situação de escassez.

No caso das hidrelétricas, o custo será avaliado, de forma indireta, pela perda de geração na usina e para o SIN, se ela for usada para outro setor ou se ela faltar para gerar energia numa situação de crise hídrica, o que implicaria num aumento do custo de operação do sistema, como se verá em detalhe mais a frente nesse estudo. Assim se evitará uma discussão sobre o valor da outorga para as hidrelétricas já que seu uso é não consuntivo.

3.2.1 Custo ou valor de oportunidade da água para a irrigação

Para a determinação do custo ou valor de oportunidade da água para irrigação foi necessário alinhar dois levantamentos de dados para definir a média ponderada do valor da água demandada em R$/m³ do setor agrícola, que foram:

• Custo ou valor total da produção agrícola municipal das bacias estudadas; e

• Volume de água retirada no município destinada para a irrigação.

Sendo nesse ponto importante o esclarecimento de duas premissas adotadas que foram a adoção do valor total pago ao produtor rural à água e a adoção da água retirada - não água consumida.

Primeiramente, optou-se por deslocar todo o montante financeiro pago ao produtor pela venda do seu cultivo para a água. Isso foi feito devido ao fato dela ser o insumo mais importante e crítico do produtor rural, que gera segurança para a produção agrícola, principalmente em zonas com baixos níveis de precipitação como é o caso das áreas das bacias estudadas. Logo, apesar da água de irrigação representar uma diminuta parte dos custos associados a produção agrícola, ela se torna responsável pela manutenção da lavoura em períodos críticos de chuva e aumento da produtividade local. Com isso, ela se torna um fator indispensável para o produtor, visto que sem a irrigação todo o investimento em maquinários e insumos químicos pode acabar se tornando inútil.

Outra premissa adotada foi a de se utilizar para a quantificação da água de irrigação a retirada de água e não apenas a água consumida. Primeiramente, na agricultura a água ao ser aplicada no solo parte é consumida pelas plantas (processo de transpiração), parte é estocada no solo (processo de evaporação) e parte flui através de escoamento superficial, subsuperficial e subterrâneo (não possui um destino certo). Com isso, optou-se por utilizar essa premissa devido as grandes incertezas oriundas da água de
retorno das culturas. Além disso, a água de retorno não necessariamente voltará imediatamente a ju-
sante do ponto de captação ou então, se ela seguirá através do lençol freático retornando a superfície
em outras bacias ou não e se voltar para a mesma bacia quanto tempo que isso levará. Logo, sendo
observado uma grande incerteza cronológica e espacial a respeito dessa água de retorno das culturas.

Também, optou-se por não separar nos municípios quais culturas que seriam predominantemente irri-
gadas ou não irrigadas, visto a impossibilidade de se fazer uma separação adequada por não existir dados
precisos sobre essa separação.

Com isso, foi possível realizar a confluência entre os dados históricos municipais de valor pago aos pro-
dutores por suas produções agrícolas e os dados históricos municipais de quantidade de água utilizada
para irrigação das lavouras. Determinando assim o custo de oportunidade da água de cada município,
de cada sub-bacia e de cada bacia hidrográfica estudada (Figura 12).

Figura 12 - Custos de oportunidade da água para a irrigação

No caso da irrigação será avaliado o custo da escassez, isto é, se não houver água haverá perda das safras
e prejuízo dos agricultores e dos municípios.

3.2.2 Custo de oportunidade da água para a geração termoelétrica

Um conceito muito utilizado na gestão ambiental e de recursos hídricos é o balanço hídrico, que relaci-
ona a oferta de água (disponibilidade hídrica) e as demandas quantitativas e qualitativas por este re-
curso. Tem como objetivo identificar situações de escassez ou estresse hídrico (balanço quantitativo –
índice de criticidade) e problemas na assimilação de cargas geradas por efluentes (balanço qualitativo)
(ANA, 2018). Ele pode ser realizado em qualquer dimensão hidrográfica (região hidrográfica, bacia, sub-
bacia etc.); porém, quanto menor for a área estudada, maior será o grau de detalhe.

O índice de criticidade baseia-se na avaliação da relação entre a demanda de água superficial e a dispo-
nibilidade hídrica, considerada como uma vazão de $Q_{95\%}$, para rios com regularização, a vazão regulari-
zada somada ao incremento de vazão com permanência de 95% (ANA, 2018). O Índice de criticidade é

\[V_{95\%} = \sum_{municipios} \text{Custo de oportunidade da \, água do município} \, (R$/m^3) \]

\[V_{95\%} = \sum_{sub = bacias} \text{Custo de oportunidade da \, água da sub-bacia} \, (R$/m^3) \]

\[V_{95\%} = \text{Custo de oportunidade da \, água da bacia} \, (R$/m^3) \]

\[V_{95\%} = \text{Vazão associada à permanência de 95% no tempo.} \]

\[V_{95\%} = \sum_{municipios} \text{Custo de oportunidade da \, água do município} \, (R$/m^3) \]

\[V_{95\%} = \sum_{sub = bacias} \text{Custo de oportunidade da \, água da sub-bacia} \, (R$/m^3) \]

\[V_{95\%} = \text{Custo de oportunidade da \, água da bacia} \, (R$/m^3) \]

\[V_{95\%} = \text{Vazão associada à permanência de 95% no tempo.} \]
dividido em cinco níveis: excelente, confortável, preocupante, crítico e muito crítico e é apresentado no Quadro 2 a seguir. Este indicador é utilizado pela ANA (2018).

Assim, vários conflitos pelo uso da água podem ser identificados e/ou prevenidos com este tipo de análise, a exemplo de uso de modelagens e tecnologias para outorga, gestão integrada e usos múltiplos.

Sendo a geração termoelétrica um usuário consuntivo de água, ela irá influenciar nos níveis de criticidade das bacias hidrográficas onde estão localizadas ou planejadas de implementação. Numa das propostas metodológicas sugerimos que usinas localizadas em áreas com alta criticidade merecem ter um custo de oportunidade de água maior do que as usinas que se localizem em bacias hidrográficas com um menor nível de criticidade.

Quadro 2 - Indicador do nível de criticidade de estresse hídrico

<table>
<thead>
<tr>
<th>Tipo de Balanço Hídrico</th>
<th>Demanda / Disponibilidade (%)</th>
<th>Enquadramento</th>
</tr>
</thead>
</table>
| Demanda Total Anual x Disponibilidade Hídrica | < 5%
5% a 10%
10% a 20%
20% a 40%
>40% | Excelente
Confortável
Preocupante
Crítica
Muito crítica |

O custo de oportunidade da água para geração termoelétrica é baseado em valores diferentes por cada nível de criticidade da bacia hidrográfica onde está localizada a usina termoelétrica. Nesse caso os valores têm como referência os valores de cobrança do uso de água dos Comitês de Bacias Hidrográficas que têm implementado esse instrumento de gestão. Assim, foram realizadas três simulações de estimação do custo de oportunidade da água, ou seja, um valor para água em situações de escassez.

a. Cálculo do custo de água pago pela usina termoelétrica Pecém na bacia do rio Jaguaribe.
b. Estimação de um novo custo de água ao custo total de implementação de novas usinas termoelétricas a serem instaladas na Região Nordeste, considerando os níveis de criticidade: Excelente, Preocupante e Muito Crítico.
c. Estimação de um custo emergencial por escassez hídrica na bacia São Francisco em usinas termoelétricas em operação, assumindo a suspensão da operação das usinas (como já aconteceu na bacia do rio Jaguaribe). No caso do Brasil a falta dessas usinas irá implicar na necessidade de gerar energia em outra fonte, possivelmente mais onerosa, elevando os preços de operação do

6 A literatura divide os usos da água em usuários consuntivos e não consuntivos. Os usuários consuntivos dos recursos hídricos referem-se aos usuários cujas demanda e utilização da água origina-se em um consumo parcial ou total da mesma. Os usuários consuntivos identificados são: irrigação, abastecimento urbano, abastecimento rural, industrial, pecuária e termoelétricidade (ANA, 2018). Já, os usuários não consuntivos dos recursos hídricos não envolvem consumo, sendo eles: os setores de energia (aproveitamentos hidrelétricos), transporte (navegação) e recreação (ANA, 2018).
SIN, com aumento do Preço de Liquidação das Diferenças – PLD e consequentemente com aumento das tarifas para os consumidores.

3.2.3 Custo de oportunidade para a geração hidrelétrica com escassez

No caso da geração hidrelétrica foi avaliada a perda de garantia física das usinas, na hipótese de diminuição das vazões afluentes seja pela alteração do regime de chuvas, pelo assoreamento dos reservatórios, ou pelo uso consuntivo da água para irrigação.

No caso das restrições ambientais será avaliado o cenário de alteração da geração de energia com a mudança das vazões ambientais a serem mantidas no rio a jusante de uma usina.

Nos dois casos com a possível redução na garantia física haverá aumento do PLD do SIN, e consequente aumento das tarifas para o consumidor além de prejuízo para os geradores que mantiverem sua produção em outras regiões do mercado regulado, pois a garantia física total do SIN diminuirá. Essa foi a forma proposta para avaliar o custo do insumo água para o setor elétrico.

4 LEVANTAMENTO DE DADOS

Para o desenvolvimento do projeto optou-se pela utilização de base de dados públicas oriundas das principais instituições governamentais como ANA, EPE, IBGE, comitês de bacias, artigos científicos de universidades renomadas e outros.

Quadro 3 - Base de dados utilizados no projeto

<table>
<thead>
<tr>
<th>Área</th>
<th>Referência</th>
<th>Utilização</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso Consuntivo</td>
<td>Lista de Municípios CBHSF</td>
<td>Definição dos municípios da bacia do São Francisco</td>
</tr>
<tr>
<td>Sistema Energético</td>
<td>Relatórios sobre planos de expansão da EPE</td>
<td>PDE 2026 e Plano de Biocombustíveis</td>
</tr>
<tr>
<td>Sistema Energético</td>
<td>Balanço energético</td>
<td>Estatísticas de oferta de energia primária e sistema elétrico</td>
</tr>
<tr>
<td>Setor Elétrico</td>
<td>Plataforma SIGEL – ANEEL</td>
<td>Localização das Usinas Termoelétricas por tipo de combustível</td>
</tr>
<tr>
<td>Setor Elétrico</td>
<td>Base de dados EIMA</td>
<td>Localização de uma fonte hídrica e sistema de resfriamento de uma usina a gás natural</td>
</tr>
<tr>
<td>Setor Elétrico</td>
<td>Base de dados da Tese de ARROYO, 2012 e 2018</td>
<td>Coeficientes hídricos para usinas de geração elétrica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tipo de sistema de resfriamento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caso de Pecém</td>
</tr>
<tr>
<td>Área</td>
<td>Referência</td>
<td>Utilização</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Setor Elétrico</td>
<td>PARECER ÚNICO Licenciamento Ambiental de UTEs</td>
<td>Identificação do tipo de sistema de resfriamento de UTEs a bagaço de cana: BEVAP, DVPA, Marituba, São Judas Tadeu e WD.</td>
</tr>
<tr>
<td>Reservatório</td>
<td>Base de dados do COGERH</td>
<td>Histórico do nível do reservatório do Castanhão</td>
</tr>
<tr>
<td>Disponibilidade Hídrica</td>
<td>Base georreferenciada da ANA</td>
<td>Balanço quantitativo por nível de criticidade</td>
</tr>
</tbody>
</table>
5 AVALIAÇÃO DO VALOR DA ÁGUA PARA IRRIGAÇÃO

As bacias hidrográficas do Jaguaribe e do São Francisco possuem elevado grau de participação de diferentes integrantes para o uso consuntivo das águas. Logo, com o intuito de propiciar o direito da utilização hídrica por parte de cada participante é necessário haver conscientização e um maior conhecimento dos principais usuários das vazões dessas bacias. Com esse intuito, a ANA vem desenvolvendo estudos históricos de longo prazo que permitem que os diversos setores e os comitês de bacia possam determinar as projeções de captação, consumo e retorno de diferentes setores econômicos brasileiros. Para o estudo em questão foram utilizados dados de vazões históricas e projeções futuras de acordo com ANA (2019) que realizou um levantamento aprofundado das demandas hídricas totais e setoriais por município brasileiro de 1931 até 2030.

A partir desse estudo, foi observado que na bacia do Jaguaribe (Figura 13), ao longo de todo o período histórico de análise, a agricultura sempre foi a responsável pela maior parte do uso consuntivo da água, inclusive, durante todo o momento, demandando mais água para a irrigação do que todos os outros usos consuntivos juntos, chegando em 1998 a ser responsável pela captação de cerca de 88% de toda a água retirada na bacia. Contudo, devido a maiores pressões oriundas de outros usuários consuntivos, a agricultura vem perdendo um pouco de espaço para outros setores, como o do abastecimento urbano que ultimamente é responsável por cerca de 11% da retirada de água da bacia e da geração termoelétrica que representa cerca de 2% da retirada total da água da bacia do Jaguaribe.

![Figura 13 – Retirada de água para irrigação – Bacia do rio Jaguaribe.](image)

Fonte Manual de outorga ANA – 2019

Conforme pode ser observado no Quadro 4 a bacia do Jaguaribe apresenta uma grande volatilidade nos níveis de produção agrícola, o que faz com que tanto o montante recebido pelos produtores varie ao longo dos anos, mas também os principais tipos de culturas produzidas na região.

Também é possível perceber uma forte ligação entre os anos de maior captação de água na bacia do Jaguaribe com maiores valores de produção agrícola e também, com a predominância de três culturas.
chaves para a região: a banana; o feijão; e o milho, que em todos os anos que foram obtidos valores maiores do que 100 milhões de reais por produção agrícola, os três estavam presentes entre os quatro produtos mais produzidos na região da bacia do Jaguaribe.

Quadro 4 - Produção agrícola na bacia do Jaguaribe

<table>
<thead>
<tr>
<th>Bacia do Jaguaribe</th>
<th>Valor total da produção agrícola (milhões R$)</th>
<th>Principais produtos agrícolas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>81</td>
<td>Feijão; Banana; Milho</td>
</tr>
<tr>
<td>2006</td>
<td>123</td>
<td>Milho; Feijão; Banana</td>
</tr>
<tr>
<td>2007</td>
<td>88</td>
<td>Banana; Feijão; Milho</td>
</tr>
<tr>
<td>2008</td>
<td>187</td>
<td>Feijão; Milho; Banana</td>
</tr>
<tr>
<td>2009</td>
<td>131</td>
<td>Milho; Banana; Feijão</td>
</tr>
<tr>
<td>2010</td>
<td>94</td>
<td>Banana; Feijão; Mandioca</td>
</tr>
<tr>
<td>2011</td>
<td>223</td>
<td>Milho; Feijão; Banana</td>
</tr>
<tr>
<td>2012</td>
<td>75</td>
<td>Banana; Feijão; Mandioca</td>
</tr>
<tr>
<td>2013</td>
<td>92</td>
<td>Banana; Cana-de-açúcar; Feijão</td>
</tr>
<tr>
<td>2014</td>
<td>232</td>
<td>Banana; Milho; Feijão</td>
</tr>
<tr>
<td>2015</td>
<td>96</td>
<td>Banana; Castanha de caju; Feijão</td>
</tr>
<tr>
<td>2016</td>
<td>127</td>
<td>Banana; Feijão; Coco</td>
</tr>
</tbody>
</table>

É possível dizer que na última década houve uma predominância na produção agrícola de alto valor agregado na região do Baixo Jaguaribe, que é o cultivo do cajueiro para a produção de castanha de caju, o que fez com que a menor região da bacia do Jaguaribe pudesse gerar o maior valor econômico por região. Percebe-se grande importância das regiões do Baixo Jaguaribe e do Salgueiro para a economia das localidades, o que condiz com perfil hidrológico das duas regiões, que são as que possuem maior concentração de retirada de água para o setor agrícola.

Em relação ao perfil produtivo da bacia do São Francisco é observado um comportamento de crescimento gradativo entre os anos, conforme pode ser visto na Quadro 5. Além disso, quatro culturas se destacam como sendo as principais produzidas na bacia durante todo o período de análise, que são a cultura do café, da cana-de-açúcar, do milho e da soja. Também é possível observar a grande importância do setor agrícola para o desenvolvimento econômico, que em 2016 chegou a movimentar cerca de 24 bilhões de reais, que condiz com o que já havia sido exposto sobre o setor agrícola como responsável pela captação de grande parcela da água da bacia.

Quadro 5 - Produção agrícola na bacia do São Francisco

<table>
<thead>
<tr>
<th>Bacia do São Francisco</th>
<th>Valor total da produção agrícola (R$ bilhões)</th>
<th>Principais produtos agrícolas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>8.8</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2006</td>
<td>8.2</td>
<td>Café; Cana-de-açúcar; Soja</td>
</tr>
<tr>
<td>Ano</td>
<td>Valor total da produção agrícola (R$ bilhões)</td>
<td>Principais produtos agrícolas</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2007</td>
<td>10.4</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2008</td>
<td>13.5</td>
<td>Soja; Café; Milho</td>
</tr>
<tr>
<td>2009</td>
<td>12.5</td>
<td>Soja; Cana-de-açúcar; Café</td>
</tr>
<tr>
<td>2010</td>
<td>13.5</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2011</td>
<td>17.5</td>
<td>Cana-de-açúcar; Café; Soja</td>
</tr>
<tr>
<td>2012</td>
<td>19.3</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2013</td>
<td>19.3</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2014</td>
<td>21.8</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2015</td>
<td>21.8</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
<tr>
<td>2016</td>
<td>23.9</td>
<td>Soja; Café; Cana-de-açúcar</td>
</tr>
</tbody>
</table>

A maior parte desse montante é decorrente da produção de duas sub-bacias do São Francisco: Alto São Francisco e Médio São Francisco, com maior remuneração por produção, principalmente devido a altos níveis de produção de café, milho e soja (no Alto São Francisco) e de cana-de-açúcar, do milho, da soja e da uva (no Médio São Francisco).

A partir desses dados de produção histórica e do histórico de retirada de água das bacias do Jaguaribe e do São Francisco, foi possível desenvolver médias municipais do valor da produção agrícola por metro cúbico de água retirada, o que foi denominado como custo da água para a produção agrícola (R$/m³ retirado). Para o desenvolvimento desse custo de água, foram adotadas algumas premissas chave, como por exemplo: toda a água retirada pelo setor agrícola será considerada como água consumida, devido às incertezas decorrentes de não ser possível determinar o local do corpo hídrico, em qual corpo hídrico essa água retorna e em que tempo que a água percolada não consumida irá retornar ao corpo hídrico; o valor pago ao produtor rural é mantido inalterado, visto que, sem essa água para a irrigação e devido às condições edafoclimáticas locais inadequadas, não é possível a produção de commodities agrícolas na região. Com isso, foi possível determinar o valor da água em reais por metro cúbico retirada para o produtor rural em cada município da região da bacia do Jaguaribe e do São Francisco.

Na Figura 14 pode-se observar a evolução histórica do valor da água para o produtor rural entre os anos de 2004 e 2016, assim como a diferença entre o valor dessa água em cada sub-bacia do Jaguaribe e a média total da bacia. É interessante notar que, durante todo o período de análise, o valor da água nas bacias do Alto Jaguaribe e Banabuiú apresentaram os maiores valores, o que sugere que apesar de não terem grandes produções agrícolas, essas bacias geram grandes valores de produção com pouca água demandada. Ademais, as bacias do Salgado e do Baixo Jaguaribe, apresentaram valores de água mais baixos, justamente devido à grande necessidade de aporte de água para irrigação e valores totais de produção agrícola já não tão altos. Também, pode-se perceber que a média do valor da água da bacia do Jaguaribe se aproxima mais do valor da bacia do Baixo Jaguaribe, que é a que possui produção dentre todas as sub-bacias do Jaguaribe.
Contrariamente ao que acontece na bacia do Jaguaribe, na do São Francisco (Figura 15) são justamente as sub-bacias que apresentaram maior valor total de produção agrícola que obtiveram maiores valores para a água demandada. Isso ocorre principalmente pela grande produção agrícola de alto valor agregado, como café na bacia do Alto São Francisco e a uva na bacia do Médio São Francisco, sendo essas culturas permanentes com alto valor agregado e baixa demanda hídrica. Esse fato fez com que a média do valor da água demandada na bacia do São Francisco fosse, durante todo o tempo de análise, mais próxima aos valores encontrados para as bacias do Alto São Francisco e Médio São Francisco do que nas demais regiões.

AVALIAÇÃO DAS FONTES DE GERAÇÃO TERMOELÉTRICA E USOS DA ÁGUA

O sistema energético brasileiro tem uma alta participação de fontes renováveis, responsáveis por cerca de 45% da energia primária do país em 2018. Restringindo a análise apenas à matriz elétrica, o Balanço Energético Nacional (BEN) destaca o avanço da participação de renováveis: 84% em 2018, devido à maior
oferta hídrica, aliada à expansão da geração eólica e aumento de termoelétricas a biomassa (principalmente, bagaço de cana-de-açúcar). A oferta de energia hidroelétrica representa 64% do total do mix brasileiro. Contudo, planos de expansão energética apontam uma queda dessa participação devido ao fato de que a maior parte do potencial hidrelétrico passível de aproveitamento no país encontra-se na região Norte, onde variáveis ambientais importantes poderiam afetar ou limitar a expansão da oferta (EPE, 2017a). Assim, haveria uma redução na instalação de novas usinas hidrelétricas, porém mantendo uma participação das renováveis superior a 80%. Considerando nessa porcentagem uma maior quantidade de usinas PCH (Pequena Central Hidrelétrica), CGH (Central Geradora Hidráulica), eólicas, solares (PV) e a biomassa (termoelétricas) (Figura 19) entrariam no mix brasileiro.

Figura 16 - Participação das fontes na expansão de oferta de energia segundo PDE 2026.

Fonte: EPE, 2017b.

O Plano Decenal de Energia ainda indica que a expansão apresenta um menor crescimento da capacidade de armazenamento nos reservatórios se comparada com a demanda de energia. Isso faz com que o sistema passe a operar com dificuldade de estocar nos momentos de excesso para utilização nos momentos de escassez. Essa característica traz novos desafios para a operação do sistema, mas também traz maior previsibilidade sobre as necessidades de despacho termoelétricas novas (EPE, 2017b).

Entre as usinas de geração termoelétrica encontram-se as de carvão mineral, gás natural, derivados de petróleo, biomassa e nucleares. O carvão mineral brasileiro é de baixa qualidade, sendo viável de ser consumido apenas na proximidade das minas de carvão, localizadas na região Sul do país. Contudo, usinas termoelétricas têm se posicionado estrategicamente próximas a zonas portuárias para o aproveitamento de carvão mineral importado, como o caso as usinas Pecém I, Pecém II e Itaqui na região Nordeste. O gás natural é outra fonte energética que é aproveitada de maneira mais distribuída pelo alcance ao combustível. Entre as usinas a biomassa, o bagaço de cana-de-açúcar tem sido o combustível mais utilizado na geração termoelétrica nos últimos anos (EPE, 2017a). Em 2017, a participação da bioeletricidade da cana-de-açúcar na geração nacional foi de 3,6%, mantendo o patamar do ano anterior (EPE,
O aumento da geração da bioeletricidade ocorre durante a safra, período concomitante ao da estiagem e redução da geração hidroelétrica, sendo estas duas fontes complementares entre si.

O setor energético requer grandes quantidades de recursos hídricos, tanto como usuários consuntivos (termoelétricas, por exemplo) como não consuntivos (hidroelétricas), representando cerca de 15% das retiradas de água globais (IEA, 2012 e 2016). Segundo dados apresentados pela OECD (2012) apud Mariani et al. (2016) e considerando a demanda por recursos hídricos superficiais e subterrâneos, estimou-se que a demanda de água em 2050 seja de cerca de 5.500 km³ (crescimento de 55% com relação a 2000) devido principalmente aos aumentos na demanda para o setor industrial (400%), para a geração de energia termelétrica (140%) e para o uso doméstico (130%).

É conhecido o fato de o Brasil possuir uma situação confortável em termos quantitativos de água, embora cerca de 70% dos recursos hídricos disponibilizados estão concentrados na Região Hidrográfica Amazônica, onde populações menores e poucas indústrias estão localizadas (ANA, 2018). A distribuição espacial desigual dos recursos hídricos no Brasil afeta, principalmente, o Nordeste, região brasileira com maior escassez de água.

A retirada, a reposição e o consumo de água na geração termoelétrica dependem do tipo de combustível, eficiência da geração de eletricidade e, principalmente, do sistema de resfriamento, sendo ele o de maior uso intensivo da água. O sistema de resfriamento pode ser abastecido de uma fonte hídrica superficial (rio ou mar) ou subterrânea. Existem principalmente três tipos de sistemas de resfriamento: (i) sistema aberto (once-through – OC): demanda altas quantidades de água, mas o consumo é mínimo (quase 1% de retirada de água é consumida); (ii) sistema fechado úmido (wet cooling tower – WCT): processo de recirculação que requer pouca quantidade de água para a reposição de perdas, principalmente por evaporação (quase o 75% da demanda é consumida); (iii) sistema seco (dry cooling – DRY): não requer água para o resfriamento e o custo desta tecnologia é a mais elevada de todas.

O sistema de resfriamento OC é a tecnologia mais barata e a que consume menos energia elétrica interna da usina. Porém, além de demandar altas quantidades de água, os efluentes podem ser devolvidos com altas temperaturas no corpo receptor, podendo impactar a qualidade da água e ao ecossistema aquático. Ainda, as altas temperaturas do ar e baixas precipitações poderiam limitar a disponibilidade hídrica com períodos de secas, chegando a originar cortes na geração elétrica. Como exemplo, a Europa teve uma queda na geração térmica de energia durante o verão de 2003, devido à redução de potência ou mesmo paralisação de várias usinas nucleares pela baixa disponibilidade hídrica (IAEA, 2004). Igualmente, uma nova queda na geração aconteceu na França, Espanha e Alemanha em 2006 (GOLOMBEK et al., 2011).

Recente publicação dos EUA⁷ mostra vários casos de interrupção de operação das usinas termoelétricas

⁷ Em 2008, FEELEY III et al. (2008) indicava que nos Estados Unidos da América sistemas de resfriamento a circulação aberta totalizavam 42,7%, 41,9% circuito fechado a torre úmida, 14,5%, circuito fechado com lagoa de resfriamento e somente 0,9% correspondia a circuito fechado seco.
pela falta de água ou aumento de sua temperatura inviabilizando sua refrigeração. A Figura 17 a seguir mostra um levantamento de usinas que foram desligadas por falta de água ou aumento de temperatura.

Figura 17 - Usinas termoelétricas no EUA e suas falhas de operação

Um aumento da participação das termoelétricas induz ao aumento da demanda e consumo de água do setor elétrico, podendo provocar impacto nas bacias hidrográficas comprometidas, pela redução da disponibilidade hídrica para outros usuários consuntivos (ARROYO, 2018). O relatório ANA (2018) indica que a demanda do setor foi de 3,2% e o consumo somente de 0,2%. Pesquisas sobre água e termoelétricas no Brasil têm sido desenvolvidos principalmente por ARROYO (2012 e 2018) e por IEMA (2016). ARROYO (2018) realizou um inventário de todas as termelétricas com ciclo Rankine e o tipo de sistema de resfriamento. Assim mais do que 90% das térmicas modeladas tinham um sistema de resfriamento aberto. ARROYO (2018) estimou os coeficientes hídricos de retirada e consumo por tipo de tecnologia de geração elétrica e sistema de resfriamento para o Brasil (ver Quadro 6).

Quadro 6 - Coeficientes de demanda e consumo de água das usinas de geração termoelétricas
6.1 Termoelétricas e o uso de água na Bacia do Rio São Francisco

A maioria das usinas termoelétricas em operação que são usuários consuntivos dos recursos hídricos. Eles, utilizam intensivamente água no sistema de resfriamento. Nesta bacia, a capacidade instalada é 677 MW, em que 62% correspondem a termoelétricas a bagaço de cana-de-açúcar, 33% a gás natural e 5% a biomassa. A sub-bacia São Francisco Alto tem 57% da capacidade instalada em operação (1 usina a ciclo combinado a gás natural e 4 usinas a bagaço de cana-de-açúcar). As usinas previstas a ser situadas dentro da bacia São Francisco serão operadas com fontes de energia de biomassa (resíduos florestais e lenha) e a gás natural. Elas se localizam, na sua maioria, na sub-bacia do São Francisco Médio. A Figura 18 mostra a localização das usinas termoelétricas em operação e as previstas.
Figura 18 - Localização das usinas termoelétricas por sub-bacias do rio São Francisco.

Fonte: Elaboração própria com base em ANEEL (2019) e ANA

O Quadro 7 mostra o levantamento de informação das usinas termoelétricas por tipo de combustível e sistema de resfriamento, cujas as fontes de informação provêm de base de dados de pesquisas como IEMA (2016) e ARROYO (2018) e outros documentos como o Parecer Técnico para Licença Ambiental das UTEs, tendo em vista que não existe uma base de dados oficial sobre o tipo de sistema de resfriamento de cada usina (Quadro 8).

Quadro 7 - Termoelétricas em operação por tipo de combustível e sistema de resfriamento.

<table>
<thead>
<tr>
<th>Sub-bacia</th>
<th>Nome da Usina</th>
<th>Capacidade (MW)</th>
<th>Combustível</th>
<th>Sistema de resfriamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>São Francisco Baixo</td>
<td>Marituba</td>
<td>21</td>
<td>Bagaço de cana</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>DVPA</td>
<td>28</td>
<td>Bagaço de cana</td>
<td>WCT</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>São Judas Tadeu</td>
<td>56</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Enervale</td>
<td>30</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>BEVAP</td>
<td>60</td>
<td>Bagaço de cana</td>
<td>WCT</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>WD</td>
<td>48</td>
<td>Bagaço de cana</td>
<td>WCT</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Sykuê I</td>
<td>30</td>
<td>Capim Elefante</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Submédio</td>
<td>Agrovale</td>
<td>16</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Ibirité</td>
<td>226</td>
<td>Gás Natural</td>
<td>OC</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Total</td>
<td>25</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Bambuí</td>
<td>30</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Agropéu</td>
<td>22</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>LDC Bioenergia</td>
<td>85</td>
<td>Bagaço de cana</td>
<td>OC*</td>
</tr>
</tbody>
</table>

Quadro 8 - Usinas termoelétricas previstas por tipo de combustível e sistema de resfriamento

<table>
<thead>
<tr>
<th>Sub-bacia</th>
<th>Nome da Usina</th>
<th>Combustível</th>
<th>Sistema de resfriamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>São Francisco Baixo</td>
<td>Ebrasil NE V</td>
<td>Gás Natural</td>
<td></td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>JK</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Campo Grande 3</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Esperança</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Lagoa Grande I</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Lambari III</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Boltbah</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Lambari I</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Campo Grande 2</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Lambari II</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Médio</td>
<td>Buritizeiro</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Betim</td>
<td>Gás Natural</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Acai</td>
<td>Lenha</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Várzea da Palma</td>
<td>Resíduos Florestais</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Acai II</td>
<td>Lenha</td>
<td>WCT*</td>
</tr>
<tr>
<td>São Francisco Alto</td>
<td>Acai III</td>
<td>Lenha</td>
<td>WCT*</td>
</tr>
</tbody>
</table>

Os sistemas de resfriamento que não conseguiram ser identificados foram assumidos como ciclo aberto (OC*). Além disso, as usinas previstas para entrar no sistema elétrico foram consideradas com sistema de resfriamento fechado úmido (WCT*).

Várias das usinas a bagaço de cana-de-açúcar foram instaladas com sistema de resfriamento fechado úmido; assim, sua operação levará a aumentos no consumo de água, com possível impacto nos outros usuários na jusante. Além do mais, deve-se considerar que a bioeletricidade deste tipo de usinas é realizada através da cogeração. Assim, a quantidade de água demandada pela usina é abastecida tanto para a geração elétrica como para o calor útil necessária para o processo industrial, tal como é mostrado na Figura 19 onde somente o excedente de energia elétrica gerado é vendido ao SIN.

![Figura 19 - Uso de água no processo de cogeração com bagaço de cana-de-açúcar.](image)

Fonte: ARROYO, 2018.

A maior quantidade de termoelétricas a ciclo Rankine em épocas de secas será uma concorrência para os outros usuários de água na bacia do Rio São Francisco. Ainda com a complementariedade existente.
entre as UTE a bagaço de cana com a hidroeletricidade, aumentando o consumo de água e o estresse hídrico.

6.2 Termoelétricas e o uso de água na Bacia do Rio Jaguaribe

As UTEs do Porto de Pecém (ciclo combinado a gás natural) e Porto de Pecém II (carvão mineral) estão localizadas dentro do complexo industrial do Pecém na zona portuária do estado de Ceará. A Companhia de Água e Esgoto do Ceará (CAGECE) é quem fornece água para o complexo industrial, cuja principal fonte era o reservatório de Sítios Novos. Devido à inclusão destas UTEs no complexo portuário, as UTES de Pecém foram consideradas conectadas do ponto de vista da água ao açude Castanhão, localizado na bacia do Rio Jaguaribe (SIRH/CE, 2012), Região Hidrográfica Nordeste Oriental (Figura 20). Castanhão é o maior açude para múltiplos usos do Brasil, sendo a prioridade o abastecimento à área metropolitana de Fortaleza, onde vive quase metade da população do estado. Outros usos que abastece o açude são a irrigação, piscicultura e regularização da vazão do Rio Jaguaribe.

![Figura 20 - Localização de Castanhão e termoelétricas de Pecém no Nordeste Oriental.](image)

A usina Porto de Pecém e Porto de Pecém II têm uma capacidade instalada de 5,2 MW e 365 MW, respectivamente. Ambas usinas contam com um sistema fechado úmido. Mesmo que esse tipo de sistema de resfriamento demande pouca quantidade de água, comparado com um ciclo aberto, aproximadamente 75% do retirado é consumido por perdas de evaporação. O açude Castanhão tem apresentado
situações de criticidade, chegando a 5% de seu volume total de água em 2017, pior cenário desde 2002, quando entrou em operação. Esse tipo de concorrência pelo uso da água gera um conflito, que poderia ser evitado no caso as usinas tivessem solicitado no licenciamento ambiental utilizar água do mar\(^8\), por causa da ótima localização em que se encontram. Já o RIMA do Porto de Pecém previa que a principal concorrência para o fornecimento de água era o abastecimento humano, principalmente durante o período de seca, quando a população poderá reivindicar o uso das reservas superficiais (MPX MINERAÇÃO E ENERGIA LTDA, 2006). Ainda, a lei estadual de recursos hídricos prevê que em caso de escassez de água, são suspensidas as outorgas às empresas operadoras das usinas, sem que haja indenização às mesmas (ECODEBATE, 2017).

O estado do Ceará implementou uma tarifa de cobrança pelo uso de recursos hídricos superficiais e subterrâneos. O órgão responsável pela implementação da cobrança é a Companhia de Gestão de Recursos Hídricos (COGERH). Ela possui as funções de Agência de Águas (OECD, 2017). As cobranças são diferenciadas pelo tipo de usuário, tendo em conta as suas capacidades de pagamento, contendo, assim, mecanismos de subsídio intersetoriais e extra-setoriais, incluindo o subsídio direcionado à agricultura devido às cobranças incorridas ao setor (OECD, 2017). A cobrança é calculada conforme o volume, mas o valor cobrado varia anualmente, também de acordo com as condições climáticas: em período de seca, os custos de bombeamento são maiores, bem como a cobrança (OECD, 2017). Mediante a Lei Nº 16.103, de 02 de setembro de 2016, a COGERH tornou efetiva a cobrança da tarifa de contingência pelo uso dos recursos hídricos em período de situação crítica de escassez hídrica no estado do Ceará. Esta tarifa de contingência adicional é chamada de “cobrança do encargo hídrico emergencial - EHE” e considera o volume de água bruta consumida, que é equivalente a sete vezes o valor mensal praticado (ESTADÃO, 2017).

Recentemente, outra termoelétrica a gás natural obtive a Licença Ambiental Prévia, com o objetivo de se localizar na área portuária do Pecém. Ela considera um ciclo de resfriamento aberto com o mar como fonte hídrica.

6.3 Proposta para cobrança do uso da água para geração termoelétrica

Vários conflitos pelo uso da água podem ser identificados e/ou prevenidos por meio do balanço hídrico e a identificação do nível de criticidade das bacias hidrográficas. A Figura 21 e Figura 30 mostram o nível de criticidade das bacias onde são localizas as usinas termoelétricas em estudo e o reservatório Castanho.

Figura 21 - Balanço quantitativo da bacia do Rio Jaguaribe
Fonte: Elaboração própria em base a ANA, 2018

Figura 22 - Balanço quantitativo da bacia do Rio São Francisco
A Figura 21 mostra que o açude Castanhão está localizado em uma área com nível crítico e muito crítico, com pouca presença de corpos hídricos com um nível preocupante e confortável-excelente. Isto justifica a preocupação da segurança energética, devido à disponibilidade hídrica, para geração das termoelétricas que dependem do uso de água desse açude.

A Figura 22 e Quadro 9 mostram as usinas termoelétricas estão localizadas, na sua maioria, em áreas com um nível de criticidade alto na bacia do São Francisco. Cabe ressalta que, a UTE Agrovale na bacia São Francisco Submédio, UTEs Aureliano Chaves e Agropéu na bacia São Francisco Alto e UTE Enervale na bacia São Francisco Médio estão localizadas em áreas críticas e muito críticas, além de possuírem um sistema de resfriamento aberto. Dessa maneira, altas demandas de água aumentam a vulnerabilidade destas usinas para produção de eletricidade e contribuem com a pressão do estresse hídrico dos corpos de água comprometidos. Somando-se a isso, as usinas com o sistema de resfriamento fechado úmido incrementam o consumo de água, prejudicando a outros usuários na jusante.

Os níveis de criticidade do balanço quantitativo junto com a superposição da localização das usinas termoelétricas e o açude Castanhão justificam a necessidade de uma cobrança pelo uso de água diferenciado. Assim, o setor energético, ao não ser um usuário prioritário de água, deveria estabelecer até quanto está disposto a pagar (custo de oportunidade) pelo uso do recurso hídrico para geração elétrica, considerando os gastos da tecnologia de resfriamento da usina instalada ou a implementar. Os custos de oportunidade poderiam fazer com que as usinas optem por realizar um retrofit dos sistemas de resfriamento do aberto para fechado úmido ou um sistema fechado seco, mesmo considerando o aumento de valores de investimento e O&M e penalidade energética interna.

Os Comitês de Bacias Hidrográficas podem estabelecer a cobrança pelo uso da água por meio de um fator de ponderação monetário, denominado Preço Público Unitário – PPU (AGEVAP, 2018). Os valores e mecanismos associados a esse fator são negociados a partir de debate público no âmbito dos Comitês e não por meio de decisões isoladas de instâncias governamentais. Segundo os comitês, o valor do PPU, considerando captação e lançamento, varia entre R$ 0,008/m³ a R$ 2,38/m³ (Figura 23). Entre os fatores utilizados para diferenciação entre os Preços Públicos destacam-se: o volume considerado ser relativo à captação, consumo ou lançamento (AGEVAP, 2018).
Quadro 9 - Termoelétricas na bacia do São Francisco e nível de criticidade hídrico.

<table>
<thead>
<tr>
<th>Usina</th>
<th>Potência (MW)</th>
<th>Fonte</th>
<th>Sub-bacia</th>
<th>Criticidade</th>
<th>Resfriamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marituba</td>
<td>21</td>
<td>Bagaço</td>
<td>Baixo</td>
<td>Crítico</td>
<td>Torre</td>
</tr>
<tr>
<td>DVPA</td>
<td>28</td>
<td>Bagaço</td>
<td>Médio</td>
<td>Crítico</td>
<td>Torre</td>
</tr>
<tr>
<td>S.J.Tadeu</td>
<td>56</td>
<td>Bagaço</td>
<td>Médio</td>
<td>Preocupante</td>
<td>Aberto</td>
</tr>
<tr>
<td>Enervale</td>
<td>30</td>
<td>Bagaço</td>
<td>Médio</td>
<td>Crítico</td>
<td>Aberto</td>
</tr>
<tr>
<td>BEVAP</td>
<td>60</td>
<td>Bagaço</td>
<td>Médio</td>
<td>Crítico</td>
<td>Torre</td>
</tr>
<tr>
<td>WD</td>
<td>48</td>
<td>Bagaço</td>
<td>Médio</td>
<td>Preocupante</td>
<td>Torre</td>
</tr>
<tr>
<td>Sykuê I</td>
<td>30</td>
<td>Capim El.</td>
<td>Médio</td>
<td>Preocupante</td>
<td>Aberto</td>
</tr>
<tr>
<td>Agrovale</td>
<td>16</td>
<td>Bagaço</td>
<td>Sub-médio</td>
<td>Muito crítico</td>
<td>Aberto</td>
</tr>
<tr>
<td>Ibiritinga</td>
<td>226</td>
<td>Gás Nat.</td>
<td>Alto</td>
<td>Muito crítico</td>
<td>Aberto</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>Bagaço</td>
<td>Alto</td>
<td>Excelente</td>
<td>Aberto</td>
</tr>
<tr>
<td>Mbambuí</td>
<td>30</td>
<td>Bagaço</td>
<td>Alto</td>
<td>Excelente</td>
<td>Aberto</td>
</tr>
<tr>
<td>Agropêu</td>
<td>22</td>
<td>Bagaço</td>
<td>Alto</td>
<td>Crítico</td>
<td>Aberto</td>
</tr>
<tr>
<td>Lagoa da Prata</td>
<td>85</td>
<td>Bagaço</td>
<td>Alto</td>
<td>Preocupante</td>
<td>Aberto</td>
</tr>
</tbody>
</table>

Um caso diferencial de cobrança ocorre nas Bacias Hidrográficas localizadas no Ceará, em que há uma diferenciação do PPU de acordo com o tipo de adução. Para os usuários que utilizam sua captação por intermédio de estrutura hídrica com adução da Companhia de Gestão de Recursos Hídricos (COGERH), o valor do PPU pode chegar até R$ 2,383/m³, enquanto a adução com captação em mananciais (açudes, rios, lagos e aquíferos) sem adução da COGERH varia entre R$ 0,0156/m³ e R$ 0,158/m³.

Figura 23 - Valor do PPU, considerando captação e lançamento. Fonte: AGEVAP, 2018
Os valores atuais da cobrança do uso dos recursos hídricos no Brasil estão abaixo de países como Austrália, República Tcheca e Bélgica, que dão maior valor econômico ao recurso hídrico (Quadro 10).

Quadro 10 - Valores de cobrança do uso da água em países membros da OECD.

<table>
<thead>
<tr>
<th>País</th>
<th>R$/m³ de água*</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austrália</td>
<td>0,700</td>
<td></td>
</tr>
<tr>
<td>Bélgica</td>
<td>0,252</td>
<td></td>
</tr>
<tr>
<td>República Tcheca</td>
<td>0,620</td>
<td></td>
</tr>
<tr>
<td>Alemanha</td>
<td>0,040</td>
<td>Valor colocado a termelétricas com sistema de resfriamento</td>
</tr>
<tr>
<td>Polônia</td>
<td>0,052</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>0,011</td>
<td>Valor colocado a termelétricas com sistema de resfriamento</td>
</tr>
<tr>
<td>Eslovênia</td>
<td>0,016</td>
<td>Valor colocado a termelétricas com sistema de resfriamento</td>
</tr>
</tbody>
</table>

*Fonte: ARROYO, 2018, OECD, 2017 e NUNES [S.I]

* Valor de conversão considerado: 1 Euro = R$ 4

Ainda a COGERH estabeleceu cobrança diferenciada (aumento do valor cobrado) de acordo com as condições climáticas em período de seca, em que os custos de bombeamento são maiores (OECD, 2017). Como explicado na seção 5.2, o estado implementou uma tarifa de contingência pelo uso dos recursos hídricos das termelétricas em período de situação crítica de escassez hídrica no Estado, “cobrança do encargo hídrico emergencial – EHE”, que considera o volume de água bruta consumida pelas termelétricas, que é equivalente a sete vezes o valor mensal praticado. A última EHE (Decreto Nº 32.305 de 11 de agosto de 2017) indicou uma tarifa entre R$ 2,067 e 3,101/m³ de água consumida e os valores são impostos para o período de setembro a agosto do ano seguinte. Devido a essa nova regulação, as usinas termelétricas Pecém I e II apresentaram à Agência Nacional de Energia Elétrica – ANEEL um pedido de readequação do equilíbrio econômico-financeiro do seu Custo Variável Unitário (CVU) em virtude do alto custo de água. A solicitação das UTEs foi aceita e CVU repassado para ANEEL (DESPACHO Nº 2.608 DE 22 DE AGOSTO DE 2017). A Quadro 9 mostra o balanço econômico da UTE para repasse do CVU. Cabe indicar que, em 2017, o reservatório Castanhão esteve em situação crítica, com apenas 5% de seu volume total de água, por cenário desde 2002, quando entrou em operação. O ESTADAO (2018) indicou em uma publicação do 11 de abril de 2018, que desde que foi imposto o EHE, foi repassado para o consumidor R$ 81 milhões, chegando a um valor mensal de R$ 5 milhões.

Sendo assim, a proposta deste estudo é a cobrança pelo uso dos recursos hídricos pelas termoelétricas seja equivalente ao nível de criticidade da fonte hídrica que a abastece. O valor mínimo adotado é o Preço Público Unitário (PPU) para a cobrança do uso do recurso hídrico definido para cada bacia e o valor máximo é o Encargo Hídrico Emergencial adotado pelo estado do Ceará durante a crise hídrica de 2017. Os valores intermediários são frações proporcionais ao intervalo entre o valor mínimo e máximo.
Os Quadro 11 e Quadro 12 a seguir mostram os valores propostos para bacia do Jaguaribe e do São Francisco, respectivamente. Dessa maneira, as termoelétricas terão o poder de decisão do custo de oportunidade pelo uso dos recursos hídricos para geração ou deixar de produzir eletricidade e proceder a compra de energia.
Quadro 11 - Valores propostos de cobrança da água para térmicas na bacia do Jaguaribe.

<table>
<thead>
<tr>
<th>Nível de Criticidade</th>
<th>R$/m³</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>0,0135</td>
<td>Preço Público Unitário mínimo CBH Ceará</td>
</tr>
<tr>
<td>Confortável</td>
<td>0,778</td>
<td>25% do intervalo</td>
</tr>
<tr>
<td>Preocupante</td>
<td>1,556</td>
<td>50% do intervalo</td>
</tr>
<tr>
<td>Crítica</td>
<td>2,333</td>
<td>75% do intervalo</td>
</tr>
<tr>
<td>Muito crítica</td>
<td>3,101</td>
<td>Taxa de Encargo Emergencial no Estado do Ceará</td>
</tr>
</tbody>
</table>

Quadro 12 - Valores propostos de cobrança da água para térmicas na bacia do São Francisco.

<table>
<thead>
<tr>
<th>Nível de Criticidade</th>
<th>R$/m³</th>
<th>Referência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>0,0103</td>
<td>Preço Público Unitário mínimo CBH São Francisco</td>
</tr>
<tr>
<td>Confortável</td>
<td>0,778</td>
<td>25% do intervalo</td>
</tr>
<tr>
<td>Preocupante</td>
<td>1,556</td>
<td>50% do intervalo</td>
</tr>
<tr>
<td>Crítica</td>
<td>2,333</td>
<td>75% do intervalo</td>
</tr>
<tr>
<td>Muito crítica</td>
<td>3,101</td>
<td>Taxa de Encargo Emergencial no Estado do Ceará</td>
</tr>
</tbody>
</table>
7 AVALIAÇÃO DE IMPACTO PARA A GERAÇÃO HIDRELÉTRICA

7.1 UHE Belo Monte

Como já mencionado o empreendimento possui um arranjo das estruturas conhecido como derivativo, pois compreende um barramento principal no rio Xingu (no Sítio Pimental), a cerca de 40 km a jusante da cidade de Altamira, de onde as vazões são derivadas por um canal para que a geração de energia possa ser realizada na Casa de Força Principal, no Sítio Belo Monte, a cerca de 9,5 km a jusante da localidade de Belo Monte, situada no município de Vitória do Xingu, favorecendo, desse modo, de uma queda com cerca de 90 metros (ELETROBRÁS, 2006).

Como a maior parte das vazões afluentes é desviada para o canal, é preciso manter uma vazão a jusante da barragem principal em Sítio Pimental para garantir os usos da água e a qualidade ambiental na calha natural do rio Xingu. Esse trecho que terá sua vazão natural reduzida é denominado de trecho de vazão reduzida (TVR).

Resultantes dessa configuração foram formados dois reservatórios (Xingu e Intermediário) e o TVR de cerca de 100 km de extensão no rio Xingu a ser submetido a essa vazão residual, que será aproveitada para geração de energia em uma Casa de Força Complementar, localizada junto à barragem principal.

O reservatório tem Nível Máximo Normal de operação na cota 97,0 m, apresentando dois compartimentos distintos: o primeiro foi denominado Reservatório do Xingu e é formado na calha do rio Xingu, que compreende a área de inundação do corpo hídrico na cota 97,0 m e outro foi denominado Reservatório dos Canais e é formado a partir de dois canais de derivação, que conduzem as vazões derivadas do rio Xingu até a Casa de Força Principal em Belo Monte.

Para atender os usos da água e as necessidades dos ambientes aquáticos, o Estudo de Impacto Ambiental (EIA) considerou que parte da vazão natural afluentes a UHE Belo Monte deveria ser mantida no trecho da Volta Grande, ou seja, no TVR, compreendido entre o barramento principal, no Sítio Pimental, e o Canal de Fuga da Casa de Força Principal.

Na realidade foi proposto um hidrograma ecológico9 (vazões médias mensais) a ser mantido no TVR. Esse hidrograma, como proposto do EIA, está apresentado na Resolução nº 740, de 06 de outubro de 2009, da ANA. De fato, são duas propostas de hidrogramas, podendo ser utilizada uma variação ou alternância entre eles. São os denominados hidrogramas A e B. O hidrograma A mais favorável a geração de energia deveria ser utilizado em anos úmidos ou normais, e o hidrograma B somente seria aplicado.

9 Hidrograma ecológico representa as vazões que tem de ser liberadas na Barragem de Pimental (Figura30) por meio de sua Casa de Força e vertedores para manter vazões pré-definidas para manter a qualidade ambiental do trecho de vazão reduzida.
se houver dois anos secos, de modo a não causar estresse na vida aquática do TVR. O hidrograma B é menos favorável a geração. Assim não se poderia em tese aplicar o hidrograma A dois anos seguidos.

Quando é aplicado o hidrograma B menos energia elétrica será produzida, e numa usina com fator de capacidade tão baixo, cerca de 0,40, isso pode ser um grande problema. A figura a seguir ilustra esses dois hidrogramas.

![Figura 24 - Hidrogramas ecológicos da UHE Belo Monte liberados na Barragem de Sítio Pimental](image)

Nesse caso há um trade-off ocorrendo na operação dessa usina. Quando as afluências são muito baixas na estiagem, isto é cerca de 1200 m³/s ou menos, passar 700 m³/s no TVR pode acarretar situações de baixa oxigenação da água nos canais e reservatórios intermediários, e com isso ocorrer mortandade de peixes nessa região dos canais e reservatórios intermediários.

Por outro lado, se não se atende a essa vazão mínima no TVR haveria um impacto ambiental para os ambientes aquáticos e para os usos da água no trecho. Estes fatos, se concretizados, além de gerar efeitos negativos não previstos ou devidamente dimensionados, tendem a impactar também a própria rentabilidade do empreendimento, como se verá mais à frente. E existe uma demanda do Ministério Público – MP10 para que se altere essa sistemática, e que está expressa numa recomendação, da qual destacamos os trechos mais relevantes para esse estudo:

“Os Procuradores da República ao final assinados RESOLVEM RECOMENDAR AO INSTITUTO BRASILEIRO DE MEIO AMBIENTE E DOS RECURSOS NATURAIS RENOVÁVEIS - IBAMA, na pessoa de seu presidente, Sr. Eduardo Fortunato Bim, e ao Diretor de Licenciamento Ambiental, Sr. Jônatas Souza da Trindade que, na prática dos atos que se reportam ao processo de Licenciamento Ambiental da UHE Belo Monte:

1. Adotem as medidas necessárias, dentro de suas atribuições, para a retificação da Licença de Operação da UHE Belo Monte, com a revisão do Hidrograma de Consenso previsto no EIA-RIMA e sua substituição por um Hidrograma Ecológico apto a garantir as funções ambientais e a sustentabilidade das condições de vida na Volta Grande do Xingu;

2. Até que se defina para o Trecho de Vazão Reduzida do rio Xingu um Hidrograma Ecológico apto a garantir as funções ambientais e a sustentabilidade das condições de vida na Volta Grande do Xingu. Adotem as medidas necessárias, dentro de suas atribuições, para:

2.1 Suspensão dos testes do Hidrograma de Consenso proposto no EIA-RIMA da UHE Belo Monte;

2.2 A imediata mitigação dos impactos já identificados na Volta Grande do Xingu, mediante a garantia de um pulso de inundação que assegure a dinâmica ecológica do ecossistema aquático. E – considerando a inexistência de estudo científico que identifique com segurança o mínimo de água necessário para a garantia das funções ecológicas da Volta Grande do Xingu – deve ser adotada cautela e precaução mediante aplicação de um hidrograma conservador, que aumente progressivamente a quantidade de água desviada, partindo de vazões superiores ao hidrograma B (comprovadamente inviável).

O próprio EIA-Rima, no Prognóstico Global, aponta que seriam necessários pelo menos 15.000 m³/s para que ocorra um pulso de inundação expressivo, e que precisaria, ainda, ser mantido por pelo menos três meses durante o ano. A princípio, com o rio Xingu atingindo essa descarga de água, tanto em termos de volume de vazão quanto de tempo de inundação, os processos ecológicos seriam assegurados [...]."

O documento é longo e recomenda alterações significativas no hidrograma de consenso, com a vazão na época de cheia podendo chegar a 15.000 m³/s, durante três meses, o que como veremos trará perda de energia significativa para o SIN e para as tarifas dos consumidores.

7.2 São Francisco

Na década de 1970, quando os primeiros modelos de otimização baseados em modelagem estocástica começaram a ser utilizados, a precariedade das informações hidrológicas não agradava aos pesquisadores e planejadores do Setor Elétrico. Mas não havia alternativa para extrair alguma certeza da incerteza hidrológica. Quase meio século depois daqueles anos pioneiros, parece razoável indagar se faz sentido continuar usando séries históricas que remontam a passado tão distante e com tanta incerteza. Não seria mais prudente usar apenas as informações mais recentes?

O modelo Monalisa (PSR) foi usado para calcular a Energia Firme hidrelétrica por década. A energia firme de um sistema composto de múltiplas usinas hidrelétricas no Monalisa é determinada por um modelo de programação não linear que permite as seguintes opções de execução: vazão total mínima, limites de intercâmbio entre os sistemas, evaporação (com área constante / variável), irrigação, perdas hidráulicas, vazões (históricas e sintéticas), capacidade instalada, vazões incrementais negativas, e restrições
elétricas. A produção de energia total do sistema também está sujeita a restrições operativas de cada usina que compõe o sistema (balanço hídrico, limites de armazenamento e turbinamento etc.).

Como o estudo de caso é no Nordeste foi determinada deterministicamente a energia firme de cada década nessa região, considerando este sistema isolado dos demais. Utilizou-se a configuração do PMO/ONS de julho de 2019. Foi verificada com o uso do modelo Monalisa, já descrito, uma evidente diminuição da energia firme do Nordeste em décadas recentes. A energia firme decenal diminuiria de 6,4 GWm para 6,0 GWm, se utilizássemos afluências a partir de 1951, e para 5,6 GWm, se a partir de 1971 (redução de 6% e 12%, respectivamente).

![Figura 25 - Perda de garantia física decenal nas UHEs do Nordeste](image)

Uma redução da garantia física das UHE do Nordeste contribuiria para a reduzir o desequilíbrio entre a produção hidrelétrica total do Brasil (consistentemente menor que a esperada) e os contratos de venda de energia, provocando exposições financeiras às empresas donas destes ativos, o conhecido “problema do GSF”. Essas exposições levam a um aumento do custo de operação.
8 INSTRUMENTOS DE GESTÃO E OUTORGAS

A lei 9433/97 definiu cinco instrumentos essenciais à boa gestão dos recursos hídricos:

- Outorga de Direito de Uso de Recursos Hídricos;
- Cobrança pelo Uso da Água;
- Enquadramento dos corpos d’água em classes de uso;
- Sistema Nacional de Informações sobre Recursos Hídricos; e
- Plano Nacional de Recursos Hídricos.

E em seu artigo 3º – Constituem diretrizes gerais de ação para implementação da Política Nacional de Recursos Hídricos: I – a gestão sistemática dos recursos hídricos, sem dissociação dos aspectos de quantidade e qualidade.

Um recente estudo feito pela Fundação Getúlio Vargas (FGV FGV/ANA Instrumentos Econômicos Aplicados à Gestão de Recursos Hídricos - Caminhos para sua adoção em situações de conflito pelo uso da água no Brasil – 2018) faz uma análise da gestão dos recursos hídricos no Brasil e em alguns outros países.

A outorga garante ao usuário o direito de uso da água. Cabe ao poder outorgante (Governo Federal, dos Estados ou do Distrito Federal) examinar cada pedido de outorga para verificar se existe água suficiente, considerando-se os aspectos quantitativos e qualitativos, para que o pedido possa ser atendido. A outorga tem valor econômico para quem a recebe, na medida em que oferece garantia de acesso a um bem que pode ser escasso. A implantação de um melhor sistema integrado (federal e estadual) de outorgas evitaria que esse recurso fosse disputado até o limite de não mais se sustentar.

Mas esse processo de concessão mostra um complicador, o Poder Concedente deveria conhecer o volume que poderia ser outorgável numa determinada bacia. No entanto a disponibilidade de água – a vazão de um rio – é uma variável aleatória (e não um valor constante) e o que se pode conhecer tendo dados suficientes é uma distribuição de probabilidades. Assim o máximo que se pode fazer é adotar uma vazão associada a uma frequência de ocorrência ou permanência de 95%. Isto é, apenas 5% das vazões do histórico de vazões é inferior a ela. Assim o valor da soma de vazões de todos os usuários tem que ser menor do que essa vazão.

Cada usuário deveria fazer um pagamento periódico (anual) para cobrir, pelo menos, os seguintes custos:

- Avaliação hidrológica do volume outorgável (em termos quantitativos e qualitativos);
- Manutenção de sistema de registro de outorgas, com consulta facultada a qualquer interessado;
- Monitoramento no campo dos usos reais; e
- Repressão aos usos lesivos a terceiros que não estejam legitimados por uma outorga.
No Anexo é apresentada um resumo da pesquisa feita sobre os instrumentos de gestão e outorgas, como eles estão implantados no Brasil e como estão os cenários em outros países, notadamente naqueles com crises hídricas, contemplando os seguintes itens:

- Abordagens de gestão dos recursos hídricos – tributos e sistemas comercializáveis;
- Casos e cenários futuros;
- E cobrança e outorga de água.
9 AVALIAÇÃO DOS RESULTADOS DE CONFLITOS E ESTUDOS DE CASO

9.1 Custo da água para agricultura

Como apresentado no item 6 foi calculado o custo de oportunidade da água para a agricultura nas bacias dos rios São Francisco e Jaguaribe. Pode-se notar não apenas a relevância dos valores encontrados, mas também a importância de garantir essa produção pelos resultados econômicos e sociais para essas regiões (Figura 26).

<table>
<thead>
<tr>
<th>Variação do Custo de Oportuniidade da Água - Jaguaribe (R$/m³)</th>
<th>Variação do Custo de Oportuniidade da Água - São Francisco (R$/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto Jaguaribe</td>
<td>0,43 - 4,56</td>
</tr>
<tr>
<td>Salgado</td>
<td>0,19 - 1,28</td>
</tr>
<tr>
<td>Banabuiú</td>
<td>0,66 - 4,61</td>
</tr>
<tr>
<td>Médio Jaguaribe</td>
<td>0,28 - 1,38</td>
</tr>
<tr>
<td>Baixo Jaguaribe</td>
<td>0,52 - 1,21</td>
</tr>
<tr>
<td>Bacia do Jaguaribe</td>
<td>0,38 - 1,59</td>
</tr>
<tr>
<td>Alto São Francisco</td>
<td>2,35 - 4,42</td>
</tr>
<tr>
<td>Baixo São Francisco</td>
<td>1,60 - 2,62</td>
</tr>
<tr>
<td>Médio São Francisco</td>
<td>2,22 - 4,58</td>
</tr>
<tr>
<td>Submédio São Francisco</td>
<td>1,02 - 1,77</td>
</tr>
<tr>
<td>Bacia do São Francisco</td>
<td>2,13 - 3,42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-Bacia/Bacia</th>
<th>Valor da Produção Agrícola (R$)</th>
<th>Demanda de Água (m³)</th>
<th>Custo de Oportuniidade da Água (R$/m³)</th>
<th>Hidrelétricas</th>
<th>Termoelétricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto Jaguaribe</td>
<td>127.555.000</td>
<td>41.575.452</td>
<td>0,07</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Salgado</td>
<td>174.581.000</td>
<td>216.142.873</td>
<td>0,61</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Banabuiú</td>
<td>60.921.000</td>
<td>24.013.449</td>
<td>2,54</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Médio Jaguaribe</td>
<td>48.463.000</td>
<td>52.703.170</td>
<td>0,92</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Baixo Jaguaribe</td>
<td>342.159.000</td>
<td>454.921.558</td>
<td>0,70</td>
<td>---</td>
<td>Pecém.</td>
</tr>
<tr>
<td>TOTAL</td>
<td>750.675.000</td>
<td>789.359.802</td>
<td>0,96</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-Bacia/Bacia</th>
<th>Valor da Produção Agrícola (R$)</th>
<th>Demanda de Água (m³)</th>
<th>Custo de Oportuniidade da Água (R$/m³)</th>
<th>Hidrelétricas</th>
<th>Termoelétricas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto São Francisco</td>
<td>15.508.320.000</td>
<td>3.234.310.813</td>
<td>4,18</td>
<td>Retiro Baixo; Três Marias; Quelômedos.</td>
<td>---</td>
</tr>
<tr>
<td>Médio São Francisco</td>
<td>7.279.154.000</td>
<td>2.671.591.520</td>
<td>2,72</td>
<td>Sobradinho</td>
<td>---</td>
</tr>
<tr>
<td>Submédio São Francisco</td>
<td>2.031.996.000</td>
<td>1.535.474.379</td>
<td>1,32</td>
<td>Paulo Afonso I, II, III, IV; Morotó; Luiz Gonzaga; Xingo.</td>
<td>---</td>
</tr>
<tr>
<td>Baixo São Francisco</td>
<td>1.047.000.000</td>
<td>520.498.053</td>
<td>1,08</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25.867.460.000</td>
<td>7.970.875.865</td>
<td>2,99</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Figura 26 - Custo de oportunidade da água no Jaguaribe e São Francisco

9.2 Resultados do custo da água para a geração termoelétrica

Nesta seção é apresentada os resultados da proposta de custo de oportunidade da água de usuários consuntivos do setor elétrico, principalmente termoelétrica.

a. Estimativa do custo de água para a térmica de Pecém com base no declarado na época de crise hídrica
Sobre a publicação do jornal ESTADÃO em 11 de abril de 2018:

Em 11 de abril de 2018, o jornal Estadão publicou o valor aproximado de R$ 81 milhões que a usina termelétrica Pecém estava repassando aos consumidores por causa da efetivação do Encargo Hídrico Emergencial. Esse valor pode ter sido em base a informações obtidas internamente das próprias usinas termoeletricas Pecém. O ESTADÂO não indica a partir de quando essa contabilidade começou e quando acabou. Assim, pode-se assumir que o término foi em março de 2018. Além disso, outra informação que o ESTADÃO indica é que mensalmente os gastos “podem” chegar até R$ 5 milhões; informação que ajuda para estimar um gasto anual de 60 milhões (número que dá para conhecer um princípio e final).

Sobre informação oficial:

Em 2016 e 2017 com diferentes decretos foram estabelecidas as taxas de encargo emergenciais (EHE), os decretos cobrem períodos de setembro de 2016 até agosto de 2017, e de setembro a 2017 até agosto de 2018. O último decreto, Decreto Nº 32.305 de 11 de agosto de 2017, indica uma tarifa entre R$ 2.067,59 e 3.101,39/1000 m³ de água consumida, cobrança efetiva em período de situação crítica de escassez hídrica no estado do Ceará.

A ONS publica a geração mensal de todas as usinas de geração elétrica que despacham energia ao sistema interligado nacional (SIN). O Quadro 13 indica a geração da usina Pecém entre os anos de 2016 e 2018.

Quadro 13 - Geração elétricidade (MWh) da usina PECEM segundo ONS (2016-2018)

<table>
<thead>
<tr>
<th>GWh</th>
<th>Jan</th>
<th>Fev</th>
<th>Mar</th>
<th>Abr</th>
<th>Mai</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Set</th>
<th>Out</th>
<th>Nov</th>
<th>Dez</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>640</td>
<td>640</td>
<td>647</td>
<td>636</td>
<td>706</td>
<td>691</td>
<td>546</td>
<td>461</td>
<td>502</td>
<td>505</td>
<td>515</td>
<td>419</td>
</tr>
<tr>
<td>2017</td>
<td>528</td>
<td>559</td>
<td>606</td>
<td>654</td>
<td>649</td>
<td>474</td>
<td>492</td>
<td>630</td>
<td>612</td>
<td>707</td>
<td>732</td>
<td>682</td>
</tr>
<tr>
<td>2018</td>
<td>596</td>
<td>621</td>
<td>701</td>
<td>585</td>
<td>468</td>
<td>488</td>
<td>742</td>
<td>577</td>
<td>458</td>
<td>275</td>
<td>135</td>
<td>180</td>
</tr>
</tbody>
</table>

Fonte: http://www.ons.org.br/Paginas/resultados-daaoperacao/historico-daaoperacao/geracao_energia.aspx

O Decreto 32.044/2016 do Governo do Ceará regulamentou o Encargo Hídrico Emergencial (EHE) logo após o Decreto 31.981 definir emergência com a cobrança de R$ 7,21/m³ cobrados das térmicas (01/10/2016 a 31/08/2017). Esse decreto sobre o EHE foi revisado pelo Decreto 32.159/2017 alterando o valor da cobrança para R$ 3,10/m³. O impacto do EHE alcançou R$ 148 milhões (fonte: ANEEL).

O Decreto sinaliza a escassez da água ao introduzir o EHE, porém o critério para definir sua vigência (ou renovação) não foi estabelecido. O EHE foi definido após a instalação das usinas (já em operação).

11 Aneel: Requerimento administrativo, com pedido de medida cautelar, interposto pelas empresas Porto do Pecém Geração de Energia S.A. e Pecém II Geração de Energia S.A em decorrência da cobrança mensal do Encargo Hídrico Emergencial – EHE
Um possível aperfeiçoamento deste mecanismo é definir uma fórmula que relacione o volume de água do reservatório equivalente do Ceará com o preço cobrado das térmicas pelo m³ consumido.

A vantagem é dar maior previsibilidade às térmicas e melhorar a interface com o planejamento e operação do setor elétrico (impacto do preço da água sobre o CVU das térmicas).

Sobre as simulações realizadas:

Arroyo, 2018, estima a quantidade de água demandada e consumida (em unidades m³/MWh) de usinas termoelétricas com um tipo de carvão importado e sistema de resfriamento fechado úmido para a região Nordeste. O valor da demanda é 2,894 m³/MWh gerado. Esse valor foi utilizado para ser aplicado nesta simulação.

O Decreto Nº 32.305 (informação oficial) indica que o EHE serve de base ao consumo de água e não à demanda. Em termoelétricas com sistema fechado úmido, aproximadamente o 75% da água captada é consumida.

Deve-se considerar que as informações oficiais sobre geração das termoelétricas, publicadas pela ONS correspondem à geração despachada ao sistema interligado nacional (SIN). Para isto, a usina gerou uma quantidade adicional para suprir o autoconsumo de energia elétrica das operações unitárias da mesma planta.

Considerando o custo de água com base à DEMANDA da água por geração indicada pela ONS, em diferentes períodos da geração:

<table>
<thead>
<tr>
<th>m³ demanda/MWh</th>
<th>EHE máxima R$/m³</th>
<th>Geração (GWh) setembro de 2016 até março 2018</th>
<th>Custo de água (milhões)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,89</td>
<td>3,10</td>
<td>12.237</td>
<td>110</td>
</tr>
</tbody>
</table>

b. Adição do um novo custo ou valor da água, por nível de criticidade, ao custo total de implementação de novas usinas termoelétricas na Região Nordeste.

Utilizando a mesma metodologia elaborada no estudo feito pela PSR/Escolhas12, estimou-se quanto seria o novo custo de O&M das usinas elétricas previstas a serem instaladas na Região Nordeste segundo o PDE 2026. Nesta quantificação são consideradas somente as usinas previstas que usuários consuntivos de água (não sendo o caso das usinas hidroelétricas). As usinas previstas não possuem uma localização oficial dentro da Região Nordeste, podendo ser localizadas em corpos hídricos com uma boa disponibilidade hídrica ou, no contrário, em corpos hídricos com existência previa de estresse. Assim, a gestão dos recursos hídricos teria uma cobrança pelo uso de água diferenciado para termoelétricas, dependendo da sua localização e nível de criticidade. Esse valor deveria ser informado no processo de outorga.

12 Escolhas/PSR- CUSTOS E BENEFÍCIOS DAS FONTES DE GERAÇÃO ELÉTRICA 2018
do uso de água13. Dessa maneira, esta simulação calcula o custo total considerando: (i) que todas as usinas termoelétricas serão instaladas com um sistema de resfriamento fechado úmido; (ii) seguindo a metodologia descrita, seção 6.3, os valores de cobrança pelo uso de água para termoelétricas serão diferenciado por cada Comitê de Bacias Hidrográficas, nesta simulação serão utilizados os valores propostos para bacia do São Francisco; (iii) os níveis de criticidade utilizados nesta simulação são: Excelente, Preocupante e Muito Crítico; (iv) o PDE 2026 tem previsto uma usina termelétrica a ciclo combinado de gás natural, uma usina termoelétrica a biomassa e uma usina fotovoltaica. Adicionalmente, esta simulação considera uma usina termoelétrica carvão mineral.

O Quadro 14 mostra o coeficiente hídrico de demande da água de cada tecnologia para as usinas previstas pelo PDE 2026.

\textbf{Quadro 14 - Demanda de água e custo da água por nível de criticidade para a Região Nordeste}

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>m³/MWh</th>
<th>Custo da água para Nível Excelente (R$/MWh)</th>
<th>Custo da água para Nível Preocupante (R$/MWh)</th>
<th>Custo da água para Nível Muito Crítico (R$/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gás Natural Ciclo Combinado</td>
<td>1,05</td>
<td>0,01</td>
<td>1,63</td>
<td>3,24</td>
</tr>
<tr>
<td>Bioenergia</td>
<td>2,78</td>
<td>0,03</td>
<td>4,32</td>
<td>8,62</td>
</tr>
<tr>
<td>Usina a Carvão</td>
<td>2,89</td>
<td>0,03</td>
<td>4,50</td>
<td>8,97</td>
</tr>
</tbody>
</table>

\textit{Nota: Assume-se que as termoelétricas a gás natural e biomassa possuem um sistema de resfriamento fechado úmido}

Os resultados indicam um aumento no gasto da geração ao se considerar o custo da água. Para corpos hídricos com um estado de estresse muito crítico, as usinas deveriam pagar o valor adicional de 3,24 R$/MWh para as usinas a gás natural, 8,62 R$/MWh para usinas a biomassa e 8,97 R$/MWh para carvão mineral.

c. \textbf{Estimação dos custos de água com situação de estresse hídrico em usinas termoelétricas em operação na bacia São Francisco}

Nesta simulação toma como exemplo o acontecido na usina termoelétrica do Pecém (desenvolvido no item “a” desta seção) em que a escassez de água do açude Castanhão fez com a usina chegasse no limite da paralização da geração. O estado do Ceará decidiu aplicar um encargo emergencial caso a usina decidiria seguir utilizando as águas da fonte hídrica do Castanhão. Ainda o caso de Pecém afrontou a competência pelo uso de água com usuários prioritários como o abastecimento humano ou o uso da água para

13 Em uma boa gestão dos recursos hídricos deveria proibir a outorga de corpos hídricos com um nível muito crítico. Porém, muitas vezes esse critério não é aplicado.
agricultura (cujo custo de água foi avaliado na seção 5), sendo que seria de maior valia empregar a água na produção agrícola e gerar a energia em outra região ou bacia hidrográfica.

Assim, esta simulação assume que todos os corpos hídricos que abastecem de água às usinas termoelétricas da bacia hidrográfica do São Francisco afrontam um período de seca (estresse hídrico) e o Comitê de Bacias decide aplicar uma taxa de encargo emergencial similar ao do Estado do Ceará (R$ 3,10/m³ retirado). Além disso, assume-se que essa taxa emergencial é considerada para demanda de água e com as usinas operando com um sistema de resfriamento fechado úmido.

No caso limite, mesmo com o EHE poderia haver necessidade de desligar as usinas térmicas por falta de água. Esta possibilidade foi apresentada em Nota Técnica pelo ONS em 2016, que avaliou a saída do sistema de quatro usinas térmicas que captam água no reservatório de Castanhão totalizando 1654 MW (cerca de 30% da capacidade térmica da região Nordeste). O ONS concluiu que não haveria interrupção de suprimento porque – mesmo na ocorrência de baixa produção eólica no Nordeste e de produção hidrelétrica baixa associada à vazões defluentes mínimas a jusante de Sobradinho, o Nordeste conseguiria atender a demanda máxima sem riscos. Entretanto, a saída destes geradores (Pecém I e II, Termoeceará e Endesa Fortaleza) teria impactos significativos sobre custos operativos, da ordem de R$ 8 milhões por dia pelo acionamento de usinas térmicas mais caras. A Nota concluiu que, para cenário de manutenção desta indisponibilidade por quatro meses, o aumento dos custos operativos alcançaria R$ 880 milhões. Haveria ainda impacto significativo sobre o PLD da região Nordeste, com implicações comerciais bastante abrangentes.

Numa avaliação energética semelhante, verificamos o impacto da saída de operação das treze térmicas num cenário extremos de insuficiência de água. Consideramos, como na NT do ONS, que este quadro também teria duração de quatro meses em período de alto PLD (pela seca), de R$ 500 por MWh. Como a maior parte das usinas utiliza bagaço de cana de açúcar, com CVU nulo, o impacto econômico (energia que deixaria de ser produzida multiplicada pelo PLD seria bastante elevada. No caso da usina térmica a gás natural Aureliano Chaves, uma conta similar é feita, considerando a energia que deixaria de ser produzida multiplicada pela diferença entre o PLD (R$ 500/MWh) e seu CVU. O impacto da perda de 13 usinas (667 MW) nas condições descritas seria de R$ 100 milhões.

9.3 Caso do São Francisco produção hidrelétrica x irrigação

Quanto vale a água para o uso marginal agricultura?

Vejamos. Se o Agricultor A consome 10 mil m³ de água para irrigar 1 hectare onde produz 20 mil kg de uvas por ano, vendidas a R$ 5/kg. O valor da água para A é R$100 mil / 10 mil m³ = R$ 10 por m³. Já o

14 ONS NT 0091/2016 Análise eletroenergética da indisponibilidade das UTEs Porto do Pecém I e II, Termoeceará e Endesa Fortaleza
Agricultor B consome 25 mil m³ de água para irrigar 1 hectare onde produz 5 mil kg de arroz por ano, vendidos a R$ 1/kg. O valor da água para B é R$ 5 mil / 25 mil m³ = R$ 0,20 por m³.

A água utilizada pelos agricultores A e B é retirada de um reservatório que regulariza a produção de uma cascata de usinas hidrelétricas que produziriam 0,70 kWh por m³. O preço no mercado de energia (PLD) está em 0,15 R$/kWh. O valor da água para o setor elétrico é R$ 0,10 por m³.

Sempre que o PLD ultrapassar 0,30 R$/kWh, sob ponto de vista econômico A deveria produzir uvas enquanto B deveria deixar de produzir arroz e vender água para o setor elétrico.

A partir da modelagem determinou-se o valor da água para diferentes usinas na cascata do rio São Francisco considerando cenários de PLD de 100 a 400 R$/MWh. Se a retirada de um m³ for feita num reservatório de cabeceira (ex. Três Marias), seu efeito sobre o setor elétrico será maior que se este m³ for retirado de Xingó (última usina da cascata) porque no primeiro caso o m³ deixaria de ser aproveitado por todas as usinas a jusante enquanto no último somente por Xingó.

Por esta razão, o fator de produção das usinas na bacia é acumulado (da usina para jusante) em termos de MWh/m³ e valorado ao PLD (R$/MWh) para traduzir o valor deste m³ em termos econômicos (i.e. em R$/m³). O passo final foi aplicar este valor unitário sob perspectiva do setor elétrico às retiradas de água para a irrigação em cada sub-bacia do São Francisco, permitindo uma comparação com o valor da produção agrícola.

A tabela a seguir mostra que mesmo para o PLD de R$ 400 / MWh (cenário de seca) o impacto total das retiradas para o setor elétrico (R$ 2,45 bilhões) seria bastante menor que o benefício econômico gerado pela produção agrícola (R$ 23,9 bilhões).

<table>
<thead>
<tr>
<th>Sub-Bacia</th>
<th>Valor da produção Agrícola (bi R$)</th>
<th>Impacto ao SIN por PLD (bilhões R$)</th>
<th>Demanda de água (bilhões m³)</th>
<th>Valor da Água média (R$/m³)</th>
<th>Valor da Água intervalo (R$/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alto</td>
<td>13,5</td>
<td>0.29</td>
<td>0.58</td>
<td>0.84</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>4.18</td>
<td>2.35 - 4.42</td>
</tr>
<tr>
<td>Médio</td>
<td>7.3</td>
<td>0.21</td>
<td>0.40</td>
<td>0.61</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td>2.73</td>
<td>2.22 - 4.58</td>
</tr>
<tr>
<td>Submédio</td>
<td>2.0</td>
<td>0.11</td>
<td>0.21</td>
<td>0.32</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
<td>1.32</td>
<td>1.02 - 1.77</td>
</tr>
<tr>
<td>Baixo</td>
<td>1.0</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.98</td>
<td>1.60 - 2.62</td>
</tr>
<tr>
<td>Total</td>
<td>23.9</td>
<td>0.63</td>
<td>1.23</td>
<td>1.83</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
<td>2.99</td>
<td>2.13 - 3.42</td>
</tr>
</tbody>
</table>

Figura 27 - Custo da água para diversos cenários de CMO das hidrelétricas do São Francisco

Outro resultado relevante foi obtido do exercício da simulação da operação das usinas hidrelétricas do São Francisco como apresentado no item 7.2. Nele se concluiu que a Energia Firme diminuiria 800 MW médios se somente as vazões mais recentes (pós-1971) fossem consideradas, com impacto de R$ 1 bilhão/ano se a energia for valorada ao Custo Marginal da Expansão (CME). Se só a última década for considerada (um caso extremo, reflexo de uma nova realidade), a redução seria de 1,9 GWMédios ou R$ 2,5 bilhões/ano.
9.4 O caso da UHE Belo Monte

Foram feitas algumas simulações para avaliar as consequências de alteração nas condicionantes da licença de operação da UHE Belo Monte, isto é, se for aceita a demanda do Ministério Público de adotar vazões maiores do que o hidrograma de consenso.

O Ministério Público defende as alterações no hidrograma de consenso (por preocupações socioambientais com a redução das vazões no Xingu) pelos seguintes motivos principais:

- Durante o período de cheias são formadas lagoas marginais importantes para a reprodução de espécies aquáticas. Há ainda preocupação com povos indígenas.
- Se esta restrição ambiental for imposta à operação da usina haverá perda de geração de energia não prevista quando foi planejada e construída.
- A redução de energia firme da usina depende da definição do hidrograma ambiental.

Se a escolha do hidrograma ambiental é tema extremamente complexo por envolver o estudo dos ecossistemas locais, seu impacto energético sobre a usina (perda de energia firme) não é. Este impacto pode ser simulado para diferentes hidrogramas.

Foi feita uma avaliação da energia firme da usina operando aplicando-se diferentes hidrogramas com vazões nos meses de cheia maiores (com pulsos de vazão nos meses de cheia), exatamente como proposto na recomendação.

![Figura 28 - Hidrogramas de consenso e os pulsos de três meses proposto](image)

A avaliação das perdas de energia firme e os impactos econômicos correspondentes na UHE Belo Monte para vários hidrogramas com os pulsos propostos de 3 meses é mostrado na Figura 29, utilizando um custo marginal de expansão de 154 R$/MWh, exatamente como foi feito no caso das usinas hidrelétricas do rio São Francisco.
Esses impactos poderiam chegar a 1,5 GW médios o que corresponderia a um impacto de cerca de 2 bilhões por ano, o que daria para construir casas populares para 80 mil pessoas a cada ano.

Figura 29 - Perdas de energia e impactos econômicos na UHE Belo Monte
10 REFLEXÕES - WORKSHOP

No WORSHOP realizado no Instituto Escolhas no dia 26 de setembro de 2019 foram levantadas várias novas questões e aspectos relativos ao objeto desse estudo, as quais apresentamos a seguir pela sua importância e pela grande participação no evento. Ao final de cada item apresentamos uma breve conclusão da discussão que ajudou a enriquecer os estudos.

1) Setor elétrico - Termoelétricas:

As UTEs Pecém foram habilitadas em leilões e, na época, existia a obrigação de manter uma reserva de capital para o caso de um aumento de custos devido uma escassez hídrica. O empreendedor optou por não usar água dessalinizada e o Estudo de Impacto Ambiental foi aprovado com a opção do uso de fonte hídrica superficial.

Deveria se estimular o investidor a buscar soluções de mercado, como outorgas futuras, para dessalinizar a água das termoelétricas.

No caso de Pecém, há que se levar em conta que o projeto de transposição do São Francisco aconteceu após o início da construção das usinas, sem que as outorgas fossem alteradas. Na realidade houve um certo otimismo quando a execução da transposição, eu minimizaria o conflito.

A Aneel não reconheceu o pedido de aumento de tarifa quando o custo da água aumentou, mas a liminar concedida pela justiça é válida até hoje. Não houve sentença final até agora.

Na China metade das novas térmicas são resfriadas a ar.

No rio São Francisco, é preciso incorporar o custo relativo à potência ancilar provido pelas termoelétricas.

IEMA estuda a expansão termoelétrica sob o ângulo do consumo demanda de água e da poluição do ar. E está estudando o zoneamento das áreas e está desenvolvendo uma ferramenta para isso.

A expansão das termoelétricas precisa ser vista como uma política setorial. É preciso fazer a conexão com o território.

RESUMO:

No processo de cadastramento de empreendimentos na Empresa de Pesquisa Energética, fase que antecede aos leilões, é preciso dar mais atenção às outorgas de água. Além dos impactos na qualidade do ar e emissões, é preciso verificar a adequação da vazão outorgada. Não é apenas uma questão de custo e sim de disponibilidade. As agências e instituições têm que estar mais articuladas para evitar problemas de conflito de uso da água. Por exemplo, ANA, Aneel, EPE, ONS, secretarias de recursos hídricos e comitês de bacia.

Como bem colocado no caso de novas termoelétricas, é preciso planejar o território ou bacia onde as usinas vão ser instaladas. Apenas situá-las perto do centro de carga para economizar transmissão não deveria ser a única preocupação dos investidores.
As térmicas nessas regiões com limitações de recursos hídricos deveriam evitar sistemas de refrigeração com alta demanda e consumo da água, a não ser água do mar quando ambientalmente possível. Um zoneamento bem feito das áreas críticas do ponto de vista de disponibilidade hídrica, como aquele feito pelo IEMA, deve servir de base para os órgãos de licenciamento e outorga para evitar conflitos e disputas na justiça, onde perde o investidor e a sociedade, que como no caso do Pecém está pagando por isso.

2) Setor elétrico - Hidrelétricas:

| A UHE Belo Monte mostra a importância de informar o Ministério Público Federal (MPF) e a Justiça sobre os custos da água e da energia e como é feito o planejamento. Existem os hidrogramas entre os limites de 8.000 e 4.000 m³/s, desde a fase de planejamento e licenciamento. |
| UHE Sobradinho: prioridade não é geração e, sim, a regularização das vazões das UHEs de Itaparica, Paulo Afonso e Xingó. O assoreamento de Sobradinho, entre 1950 e 2002, atinge 200 km e tem efeito no delta. |

RESUMO:
É preciso melhorar a discussão dos projetos no que tange ao nexo água-energia-meio ambiente. As vazões ambientais precisam de uma análise mais cuidadosa, sob as óticas de geração elétrica e dos usos da água inclusive o ambiental. Os reservatórios de regularização terão que seguir novas diretrizes para o uso da água e, em zonas com restrições hídricas, priorizar pelo menos em crises hidrológicas os demais usos da água, preservando os reservatórios, como hoje é feito nos rios São Francisco e Paraíba do Sul na operação dos reservatórios pela ANA/ONS.

3) Matriz elétrica

O estudo deveria incluir o consumo em geração heliotérmica. Mas não existe previsão de nenhuma planta no PDE.

<table>
<thead>
<tr>
<th>Brasil geração diversificada;</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Complementariedade das fontes;</td>
</tr>
<tr>
<td>• Precisa valorar diferentes atributos das fontes.</td>
</tr>
<tr>
<td>• Pano de fundo: enfrentar a base de dados da água;</td>
</tr>
<tr>
<td>• Série de vazões históricas precisa ser reconstituída;</td>
</tr>
<tr>
<td>• Planejar sobre (dados) irreais.</td>
</tr>
</tbody>
</table>
RESUMO:
O Brasil tem uma matriz diversificada e deveria poder se desenvolver aproveitando esse portfólio de opções de geração. Temos muitos recursos naturais que se complementam. É preciso melhorar o monitoramento dos recursos hídricos e a base de dados. O planejamento em áreas críticas precisa de dados, com uma rede de observação mais densa e com melhor gestão. O planejamento de novas fontes tem que ser transparente e participativo tal como a ANEEL e a EPE começaram a fazer, foram feitos estudos de inventário hidrelétrico participativo em bacias do Mato Grosso do Sul. Fontes como a hélito-térmica podem ser avaliadas se estiverem no Plano de Expansão de Geração Elétrica, o que não é o caso.

4) Irrigação

Usar os valores de produção municipal do IBGE para estimar o custo de oportunidade resulta num valor maior do que o real ao não se separar o que vem de lavouras irrigadas daquelas sem irrigação.

Questionamento sobre falta de dados e de teoria sobre a demanda hídrica das culturas. Seguiu-se a metodologia e resultados de documento oficial da ANA.

A agricultura envolve outros custos (fertilizantes, defensivos etc.) fora a água. E algumas culturas não são irrigadas e outros sim.

Há culturas permanentes (frutas, café etc.) que têm CAPEX elevado que é perdido em caso de falta aguda de água. Há cadeias de produção agrícola que aumentam o valor e, portanto, aumentariam o custo de oportunidade.

Irrigação em Petrolina com água a R$ 76/hectare. Comparou-se com a Arcelor que produz aços planos em Vitória e consome mais de 500 m³/s.

Em mais sete meses, quando completar a transposição do rio São Francisco (Eixo Norte), as bacias do São Francisco e do Jaguaribe serão as mesmas.

RESUMO:
Para o desenvolvimento do projeto foram adotadas duas premissas chaves:

- Atribuição total do custo de produção agrícola para a água de irrigação, não sendo descontados para o cálculo do custo de oportunidade da água os gastos dos fertilizantes, defensivos e outros valores atrelados a produção rural.

Essa premissa foi adotada visto que sem a água de irrigação todo o investimento inicial em insumos químicos e maquinários pode ser perdido, então, mesmo sendo o custo da água a menor fração dos gastos com a produção agrícola, ela se torna indispensável para o seu desenvolvimento;

- Utilização da retirada de água para irrigação para o cálculo do custo de oportunidade da água.
Esse critério foi utilizado devido à dificuldade de quantificação do montante de água que realmente retorna para a mesma bacia hidrográfica. A água ao ser retirada do corpo hídrico ela pode ser consumida pelas culturas (transpiração nas plantas), armazenada pelo solo sem ser consumida pelas plantas (evaporação no solo) ou então, ser escoada através de escoamento superficial, subsuperficial ou subterrâneo. A água de retorno seria essa parcela de água que acaba sendo escoada pelo solo, porém, apenas a parcela de água que é escoada superficialmente volta diretamente para o corpo hídrico que essa água havia sido retirada. As demais parcelas fazem parte do ciclo hidrológico podendo retornar ou não para esse mesmo corpo hídrico ou migrar para outros corpos hídricos da mesma bacia ou de bacia hidrográfica diferentes. Logo, é possível perceber uma certa impossibilidade de se calcular o volume de água de retorno para a mesma bacia hidrográfica e, mesmo conseguindo, seria impossível prever o tempo que isso levaria.

Além disso, o trabalho desenvolvido procurou analisar e alertar sobre a evolução da situação hídrica de duas bacias de grande importância para a segurança hídrica, energética e alimentar brasileira, as bacias do Jaguaribe e do São Francisco. Com isso, não foi parte do escopo desse projeto desenvolver estudos mais aprofundados para demonstrar a participação unitária de cada cultura dessas bacias. Entretanto, é importante ressaltar que cada sub-região possui diferentes adequações e preferências agropecuárias, que levam a utilização ou não de diferentes tipos de sistemas de irrigação, sendo, contudo, as frutas, a cana-de-açúcar, o milho e a soja os principais atores contribuintes para a demanda hídrica do setor agropecuário das regiões estudadas, visto a sua grande necessidade de água de irrigação para o desenvolvimento de produtividades condizentes com o seu potencial genético.

Outro ponto muito discutido durante o WORKSHOP foi o ponto de se seria realmente necessário cobrar pela água e, ao cobrar, o que fazer com esse dinheiro. Esse ponto pode ser dividido em dois itens: o primeiro sobre a necessidade de cobrança da água e o segundo sobre os impactos de se estabelecer um mercado de água.

Inicialmente, a cobrança de um preço justo pela água no Brasil é algo indispensável, pois apenas com essa cobrança é que o cidadão e/ou empresa conseguirá observar a necessidade de se consumir menores volumes de água para a sua produção (rural, industrial etc.). A valoração da água, que já é realidade em diversos países no mundo, propiciou um menor desperdício de água e aplicação de meios produtivos mais eficientes e inovadores. Além disso, essa cobrança pela água é algo fundamental para possibilitar a implementação de medidas de controle, fiscalização e proteção dos corpos hídricos, como a instalação de postos de controle de qualidade e quantidade de água superficial, assim como, preservação e reflorestamento de áreas marginais dos efluentes, que possibilitam uma maior recarga de lençóis freáticos e menor assoreamento de corpos hídricos.

Em relação ao mercado da água, essa medida pode se tornar de grande relevância para a modernização e melhoramento dos sistemas de irrigação de pequenas e médias propriedades rurais. A receita advinda da venda parcial da outorga que o produtor rural possui pode permitir com que o proprietário invista capital que anteriormente ele não teria acesso para a compra e instalação de sistemas de irrigação mais eficientes como gotejamento e microaspersão. Ou então, implementação de meios de cultivo mais modernos como Integração Lavoura-Pecuária-Floresta, que requer um alto
investimento inicial e possui grande potencial de melhorias nutricionais do solo e preservação ambiental.

Ademais, o mercado da água não afetará necessariamente produtores de culturas perenes, como o caso da fruticultura. O ponto de destaque é que esse tipo de mercado é capaz de propiciar recursos que auxiliem o produtor rural a diminuir os desperdícios de água de irrigação, por meio da implementação de novas tecnologias mais modernas e eficientes, que reduzam a demanda hídrica do produtor rural e abra espaço para a comercialização do montante de água economizado com a adoção desses novos sistemas de irrigação.

Outro ponto importante destacado no workshop foi a da possível conclusão do Eixo Norte da transposição do rio São Francisco rumo ao Jaguaribe nos próximos meses. Esse ponto é algo muito delicado, visto a sua importância para esta bacia, que possui o maior grau de criticidade do Brasil. Também gera grandes preocupação os consumidores à jusante dessa transposição na bacia do São Francisco, que já vivem em um estado de grande insegurança hídrica e que podem nos próximos anos passar a sofrer ainda mais, visto que as vazões do São Francisco têm diminuído consideravelmente nos últimos anos e que com a transposição podem acabar sendo ainda mais afetados por essa mudança hidrológica.

5) Social e outros usos

Faltou analisar a assimetria do poder no uso da água: o consumo em siderúrgicas e cimento no Ceará é comparável a uma cidade de 600 mil habitantes. A indústria consegue garantir seu suprimento.

Existe a preocupação em manter o homem no campo

Degradação causada pela cultura do camarão

Faltou incluir aspectos da injustiça social no trabalho.

RESUMO:

Esses são aspectos relevantes, mas que não fazem parte do escopo do trabalho. A prioridade de uso e como gerenciar esses conflitos é necessário em qualquer plano.

Mas trabalhos sobre esse tema envolvendo externalidades das fontes devem ser feitos para orientar melhor a expansão de nossa matriz elétrica. Uma empresa que se instala numa região tem que ter responsabilidade social com a população e com os municípios onde será instalada. Não se pode mais aceitar o argumento que esse problema é do governo. Mesmo que isso afete a tarifa de energia.

6) Gestão da água

Há uma crise de gestão. Comentou-se que falta planejamento para o uso da água e que o que havia no passado recente foi perdido.
Qual é o sistema de gestão da água? Precisa haver uma mitigação de riscos jurídicos, hídricos e energéticos.

Ressaltou-se a importância da parceria EPE/ANA. Ainda existe grande retirada de água de aquíferos sem o devido controle. É preciso estruturar a colaboração dos inventários participativos das fontes, e trazer esse conhecimento para o planejamento das bacias;

Infraestrutura estratégica para população: O Agricultura & indústria define um Índice de Segurança Hídrica; apresenta-se o balanço da oferta x riscos de déficits + variação climática; o Zoneamento do país e identificação de prioridades. É um planejamento integrado e ajuda na reflexão do que seja desenvolvimento regional.

Problema da falta de medição. Se o instrumento de gestão é a outorga, ninguém faz balanço das bacias. É preciso medir. As instituições são fracas e falta organizar a infraestrutura.

No São Francisco, a infraestrutura planejada envolve cinco vezes mais água do que a oferta. Há também um conflito pelo uso da água com a irrigação, temos como exemplo a UHE Batalha na bacia do Rio São Marcos. Destacou-se que a uva e as frutas no Rio São Francisco não existiriam se não fossem as barragens. A bacia do São Francisco não é crítica – ela é uma bacia do semiárido;

RESUMO:

É preciso monitorar melhor para que se possa mitigar riscos hidrológicos, regulatórios e jurídicos. Os dados têm que ser acessíveis. Sem levantamentos e monitoramento de recursos hídricos e usos da água o planejamento não pode ser feito e os conflitos aparecerão sempre. O setor privado tem que participar desse processo e assumir sua responsabilidade no uso e planejamento dos recursos hídricos.

Como mencionado no WORKSHOP é preciso conviver com as crises hídricas e de adaptar às mudanças climáticas, pois elas sempre virão. Foi mencionado, e concordamos, que tem que haver um melhor planejamento do uso da água pelas instituições por sua importância e capacitação: ANA, ANEEL e EPE. Exemplo disso é que os aquíferos não são monitorados. E o caso dos afluentes da margem esquerda do São Francisco, relatado no WORKSHOP, demonstra essa relevância. As instituições e comitês de bacia tem que ser fortalecidos, evitando ingerências políticas.
Verificamos que na bacia do São Francisco existe uma deficiência de informação temporal e espacial. A Figura 30 e o Quadro 15 a seguir mostram a rede de postos hidrométricos. Apenas uma pequena parcela dispõe de mais de 30 anos de dados e a distribuição espacial desses postos é pouco densa para os objetivos de aferir melhor onde se localizam os déficits de água. Nessa avaliação dos postos constatamos uma alteração muito grande na descarga de base dos rios da margem esquerda do São Francisco: rios Corrente e Grande. Bacias onde a atividade agrícola e de irrigação aumentou muito nos últimos anos. Esse fato corrobora o que foi mencionado pelo Comitê de bacia do rio São Francisco de que há uma retirada muito grande de água subterrânea nessas bacias. As figuras 41,42 e 43, a seguir, mostram os dados de vazão observadas nessas bacias. Essa diminuição se acentuou a partir de 2007.

Figura 30 - Distribuição espacial dos postos hidrométricos na bacia do São Francisco
Quadro 15 – Disponibilidade de dados hidrométricos na bacia do São Francisco

<table>
<thead>
<tr>
<th>Nome do Rio</th>
<th>Localização</th>
<th>Coordenadas</th>
<th>Disponibilidade de dados</th>
<th>Total (Anos)</th>
<th>Bruto Total (Anos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juazeiro</td>
<td>Barra do São Francisco</td>
<td>23\u00b020\u00b020\u00b0</td>
<td>1995 a 2007</td>
<td>31</td>
<td>2008 a 2019</td>
</tr>
<tr>
<td></td>
<td>Barra de São Francisco</td>
<td>23\u00b020\u00b020\u00b0</td>
<td>1995 a 2007</td>
<td>31</td>
<td>2008 a 2019</td>
</tr>
<tr>
<td></td>
<td>São Francisco</td>
<td>23\u00b020\u00b020\u00b0</td>
<td>1995 a 2007</td>
<td>31</td>
<td>2008 a 2019</td>
</tr>
<tr>
<td></td>
<td>São Francisco</td>
<td>23\u00b020\u00b020\u00b0</td>
<td>1995 a 2007</td>
<td>31</td>
<td>2008 a 2019</td>
</tr>
<tr>
<td>Paracatu</td>
<td>Barra do São Francisco</td>
<td>23\u00b020\u00b020\u00b0</td>
<td>1995 a 2007</td>
<td>31</td>
<td>2008 a 2019</td>
</tr>
<tr>
<td></td>
<td>Barra de São Francisco</td>
<td>23\u00b020\u00b020\u00b0</td>
<td>1995 a 2007</td>
<td>31</td>
<td>2008 a 2019</td>
</tr>
</tbody>
</table>
Figura 31 - Vazões na bacia do rio Corrente

Figura 32 - Vazões na bacia do rio Grande

Figura 33 - Vazões na bacia do rio Urucuia
7) Regulamentação

Legislação deveria traduzir os princípios para a esfera técnica. A Lei foca em planejamento e participação. Existe a produção de dados. A Lei estabelece hierarquia Plano de Bacia, Estadual e Federal. Pergunta feita sobre os Planos de Bacia, se eles funcionam e se tem as informações necessárias: se não funcionam, o MPF perde a referência. Os comitês de bacia funcionam? Existem outros gargalos?

RESUMO:

Pelo que foi discutido é preciso aperfeiçoar as agências e comitês de bacia e atualizar e executar os planos de recursos hídricos. A produção de dados tem que ser pública e disponível.

A legislação já menciona a participação e o planejamento, mas essa participação ainda é muito incipiente como se pode ver na discussão.

8) Critérios adotados no estudo

Faltou, no exercício de valoração/precificação, discutir o que fazer com as receitas. Custo de oportunidade: ganho não pode ser atribuído só à água.

Citou-se o exemplo de Extrema (SP) onde o proprietário é pago para conservar as nascentes.

O estudo considera outros benefícios dos reservatórios como controle de cheias e secas e o turismo (para efeito do custo de oportunidade). Precisa haver compensação, em caso de racionamento?

No tocante ao preço, custo real é diferente do custo de oportunidade. O preço pode conflitar com a compensação. Foi mencionado que o estudo (Escolhas/PSR) está limitado à precificação.

Evaporação é uso consuntivo, mas precisa-se discutir como dividir a responsabilidade.

Não apareceu a evaporação líquida em reservatórios que, estima-se, ser da mesma ordem de grandeza das retiradas para a irrigação. Lembrando que os reservatórios preveem o uso consuntivo múltiplo.

RESUMO:

Não se avaliou a valoração e precificação de receitas, apenas quantificou-se uma aproximação do custo de oportunidade da água pela produção e receita alcançada.

Não se considerou a evaporação, mas contudo entendemos que esse é um fator pouco investigado e que deve ser discutido a fundo visto que a evaporação líquida em reservatórios é considerada pela ANA como um uso consuntivo da água e que é responsável por perdas considerável ao ser somada em toda a cascata da bacia do São Francisco.

Entretanto, realmente não é possível identificar um responsável apenas por esse uso da água, tendo em vista que inúmeros usuários são afetados positivamente por essa acumulação em seus reservatórios. Sendo um desses pontos positivos os benefícios no controle e regularização de volumes de cheias e secas e turismo. Contudo, esses pontos não foram utilizados para a elaboração do custo de oportunidade da água, que foi calculada apenas levando em consideração a água para irrigação.
A compensação é algo que deve vir indiretamente por meio de políticas públicas que busquem auxiliar a população nos momentos de maior criticidade, não podendo ser responsabilidade das empresas em compensar uma retirada de água que o estado lhe deu direito de captar. Além disso, o mercado de águas pode agir de forma positiva para evitar com que haja conflitos pela escassez hídrica, visto que pode acabar gerando uma melhora na eficiência das atividades produtivas, que levam a um menos desperdício e consumo de água.

Realmente o custo real da água é totalmente diferente do custo de oportunidade, visto que o custo real busca valorar esse recurso finito e escasso de forma a propiciar melhorias para uso múltiplo desse bem. Já o custo de oportunidade da água busca colocar um preço justo para esse recurso hídrico de modo que ele possa ser repassado para um outro usuário.

O termo usina renovável é utilizado para definir uma forma de geração elétrica a partir de fontes não exauríveis de energia primária, logo, a partir do momento que as hidrelétricas utilizam água que é um recurso que se renova por meio de ciclo de baixa duração, elas podem sim continuar sendo consideradas renováveis. Porém, é necessário observar que o ciclo hidrológico é algo complexo e que tem havido ações para modificá-lo. Com isso, é necessário haver compreensão que os reservatórios ultimate mente têm sido operados de forma obtusa, o que tem comprometido a sua capacidade de regulação intertemporal de vazões.

Na verdade, não são as usinas térmicas a carvão ou a qualquer outro combustível fóssil que deve ser proibida, mas sim, avaliar se o sistema de resfriamento dessas usinas é adequado ou não. Talvez, em vez de sermos tão drásticos e criticarmos um tipo de usina térmica que gera consigo uma cadeia enorme de empregos, devéssemos pensar em medidas de mitigação hídrica como resfriamento a torre seca ou ciclo fechado ao invés de ciclo aberto.

Esse estudo poderá ser melhorado no que tange a definir outras variáveis como sugerido e que não fizeram parte do mesmo, tais como:

- Evaporação dos reservatórios;
- Pagamento por serviços ambientais;
- Externalidades das usinas de geração elétrica;

E esse não é um estudo voltado para valoração ou precificação de receitas ou compensações.
11 CONCLUSÕES E RECOMENDAÇÕES

Como se pode verificar o recurso hídrico é um elemento chave para o setor elétrico como um todo. E considerar o nexo água-energia-produção de alimentos será cada vez mais relevante em áreas onde a água é escassa.

O estudo mostra que, em um cenário de crise hídrica, a “precificação” e a implementação de um sistema robusto de gestão integrada dos recursos hídricos são as ferramentas que a sociedade, o Governo e as empresas precisam para mitigar a disputa pela água e evitar prejuízos bilionários à economia nacional, em especial ao Setor Elétrico, e o consequente repasse ao consumidor por meio de aumentos na conta de energia.

Os dados apresentados evidenciam a importância de se trazer à tona as fragilidades do sistema de gestão, das instituições e da governança dos recursos hídricos, estabelecer a água como insumo prioritário e começar o debate sobre a adoção de mecanismos de preço. A definição de critérios econômicos e prioridades para a tomada de decisão tem que se antecipar a crise e derrubar o mito da abundância de água no Brasil.

Respondendo a principal pergunta do trabalho, SIM, a água é um insumo básico para o setor elétrico, tanto para geração hidrelétrica como para a geração termoelétrica. Em períodos de crise hídrica, se a operação das usinas não for bem planejada pode originar enormes custos para os geradores e para os consumidores, além dos conflitos e judicialização das outorgas e licenças. Esses futuros conflitos podem ser evitados se o indicador demanda/disponibilidade, informação publicada pela ANA, é utilizado para efetivar o instrumento de gestão da outorga e cobrança pelo uso de água.

A irrigação tem crescido muito nas bacias dos rios São Francisco e Jaguaribe (segundo a ANA no Brasil como um todo), e deve aumentar com as alterações climáticas. É preciso levantar-se com mais precisão as áreas que são irrigadas, sua eficiência de aplicação e tipos de cultivo.

O planejamento de novas fontes de geração tem que ser transparente e participativo tal como a ANEEL e a EPE começaram a fazer em bacias do Estado do Mato Grosso do Sul para liberar o licenciamento ambiental de usinas hidrelétricas, realizando estudos de planejamento de expansão da geração elétrica participativos.

Verificamos nesse trabalho que os sistemas de geração elétrica têm que considerar o planejamento do território, ou seja, das bacias e a alocação ótima dos recursos hídricos. No caso das hidrelétricas quando se discute a alteração da definição da garantia física é fundamental entender o que realmente está ocorrendo nas bacias brasileiras no que concerne aos fatores que tem causado dificuldade na definição nas vazões naturais afluentes.
O caso de Belo Monte mostra a importância de se avaliar com mais cuidado as vazões a jusante das hidrelétricas, no que tange aos demais usos da água. Adotar depois da usina construída um outro hidrograma diferente do que foi negociado vai trazer um enorme prejuízo para o SIN e para os consumidores, tal como a falta das termoelétricas do Nordeste por falta de água.

As usinas hidrelétricas não têm mais volume para regularizar as vazões até mesmo num mesmo ano e vai ficar cada vez mais difícil e complexo o despacho das usinas no SIN. E com a maciça entrada competitiva das renováveis intermitentes, será cada vez mais necessária a presença de termoelétricas.

As alterações climáticas verificadas principalmente nas bacias da região Nordeste mostraram a importância de uma melhor gestão dos recursos hídricos para atender os diversos usos da água, e manter a qualidade ambiental das bacias hidrográficas. Uma ação conjunta realizada pela ONS, ANA e IBAMA, evitou o esvaziamento dos reservatórios de Sobradinho e Três Marias. No caso da UHE Sobradinho a geração de energia elétrica foi reduzida de forma a manter uma vazão mínima no rio. Mesmo assim a restrição ambiental que havia para manter no mínimo teve que ser progressivamente reduzida de 1300 m³/s para 550 m³/s para que fosse possível recuperar o volume do reservatório, garantindo ao mesmo tempo a geração de energia, os usos da água para abastecimento humano e irrigação, e até mesmo uma vazão ambiental mínima a jusante, como se pode ver na Figura 34 abaixo.

<table>
<thead>
<tr>
<th>Vazão Defluente Mínima (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
</tr>
<tr>
<td>1200</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>800</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Figura 34 - Restrições de vazão a jusante da UHE Sobradinho. Fonte: ANA/ONS/ MMA

Em resumo:

- É legítima a preocupação do Ministério Público - MP com o impacto ambiental da UHE Belo Monte. Porém, o MP deve também considerar o interesse difuso da sociedade contrário a qualquer medida que resulte em aumento tarifário.
• No caso das usinas do rio São Francisco, é preciso avaliar a pertinência de seguir usando a série completa de vazões históricas no planejamento energético, tendo em vista a segurança do suprimento de energia e as consequências comerciais (MRE) de uma eventual modificação.
• O CVU das térmicas deve incluir componente que depende do seu sistema de resfriamento e a criticidade hídrica, devendo ser possível sua variação em casos de escassez aguda (ex. EHE do Ceará).
• No planejamento da expansão, as térmicas levarão em conta a disponibilidade hídrica.
• A irrigação tem crescido muito e deve aumentar com as alterações climáticas.
• É preciso uma gestão mais efetiva sobre retiradas de água e incorporação de valores atualizados no planejamento da operação e expansão energética, o que envolve ainda a reconstituição das séries de vazões naturais.
• É crítico que o Sistema Nacional de Gerenciamento de Recursos Hídricos, previsto na Constituição, efetivamente funcione, por meio da articulação da ANA com governos estaduais e demais instituições interessadas, como ANEEL, ONS e EPE, na emissão e fiscalização de outorgas de uso de recursos hídricos.

Relativamente aos conflitos identificados com a geração de energia elétrica podemos destacar as seguintes recomendações:

• No processo de expansão dessas fontes, as usinas termoelétricas devem considerar o planejamento do território evitando sua instalação em áreas definidas como críticas em relação com a disponibilidade hídrica. Mas se forem instaladas nessas áreas devem reduzir o uso da água, principalmente nos sistemas de resfriamento. Isto inclui a mudança por sistemas de resfriamento aberto a resfriamento fechado úmido, resfriamento fechado secou ou híbrido (uma etapa seca e outra úmida). Contudo, sistemas de resfriamento seco tem um custo de investimento e O&M maior do que sistemas fechado úmidos e ciclo aberto, além de considerar uma perda de eficiência da planta por um autoconsumo de energia maior. Outras alternativas menos convencionais de aumento da disponibilidade abrandariam: o tratamento e reuso da água de processo ou residual (como, por exemplo, o esgoto tratado) na torre de resfriamento; o aumento do número de ciclos de concentração da água de processo; a recuperação da água contida no gás de exaustão para suprir o processo de resfriamento; e a redução das perdas evaporativas por meio da secagem do carvão (Feeley et al., 2008) e a opção da captação de água do mar;
• Além do aspecto quantitativo da segurança hídrica e da geração elétrica, o processo de expansão do sistema termoelétrico pode, também, ser também influenciado pelo aspecto qualitativo. Como exemplo, pode ser citado a iniciativa desenvolvida pela Agência de Proteção Ambiental dos Estados Unidos (USEPA). A USEPA vem desenvolvendo uma norma ambiental (Cooling Water Intake Structures — CWA §316(b)) que tem como objetivo de incentivar a implementação de uma melhor tecnologia de resfriamento disponível que minimize os impactos ambientais na qualidade dos corpos hídricos receptores dos efluentes das termoelétricas, quer dizer, o impacto ambiental das altas temperaturas dos efluentes do ciclo de resfriamento aberto. Essa normativa faria com que as usinas
planejadas no futuro sejam forçadas a ser implementadas com um sistema de resfriamento fechado úmido, seco ou híbrido.

- Para melhorar a gestão com o enfoque nexo água-energia-alimentos, é necessário ter base de dados oficiais atualizados e disponíveis tanto em escala temporal como espacial. Como exemplo, no setor termelétrico não existe uma base de dados oficial sobre o tipo de sistema de resfriamento de cada usina, sendo limitado a quantificação desse setor para pesquisa. Existem avanços no tema, como as contas econômicas ambientais da água no Brasil (IBGE, 2018) e as estatísticas da ANA nos relatórios de Conjuntura dos Recursos Hídricos 2017 e 2018; porém são dados agrupados e não regionalizados por bacias.

- O aprimoramento do instrumento de gestão da cobrança pelo uso dos recursos hídricos por nível de estresse hídrico (Quadro 10) dá um sinal às termoelétricas para optar por um custo de oportunidade que as leve a fazer um uso eficiente no uso da água, quer dizer, optar por alternativas na implementação de sistemas de resfriamento, como mencionado anteriormente.

- As agências têm que estar mais bem aparelhadas e articuladas para aprovar e gerenciar os recursos hídricos – ANA, Aneel, ONS, EPE, secretarias estaduais de recursos hídricos e comitês de bacias.

- As hidrelétricas têm que considerar de forma integrada no planejamento e operação dos seus reservatórios as vazões ambientais e os demais usos da água;

- Deverá ser dado continuidade o aperfeiçoamento da reconstituição das séries de vazão natural, a partir de mais e melhores levantamentos de dados, tais como os de assoreamento dos reservatórios, medições de descarga e de níveis d’água, e dos usos da água na bacia;

- As precipitações têm realmente diminuído em algumas bacias, mas é preciso monitorar melhor, no que tange aos postos de medição e seu aparelhamento, bem como na sua distribuição espacial;

- Os projetos têm que ser aprovados num processo participativo para evitar conflitos e judicialização como está acontecendo com Belo Monte e Pecém;

- A operação de reservatórios do setor elétrico deverá considerar operá-los de forma a preservar os seus volumes em períodos de crise hidrológica, notadamente em regiões de escassez como no semiárido;

- A irrigação tem crescido muito nas bacias dos rios São Francisco e Jaguaribe, e é preciso levantar-se com mais precisão as áreas que são irrigadas, sua eficiência de aplicação e tipos de cultivo;

- As agências e comitês de bacia tem que ser fortalecidas.

- Pelo que se viu há muito trabalho a fazer no monitoramento dos recursos hídricos. Não existem postos em número suficiente e seu levantamento sistemático é insuficiente.

- Pelo que se pode pesquisar em outros países em regiões de escassez de água, tem sido aplicado um mercado de água, o que exige elaboração e aprovação de planos de recursos hídricos nas bacias hidrográficas e uma boa rede de monitoramento e controle dos usos da água, aspectos difíceis de se conseguir nas bacias brasileiras;
A falta ou deficiência de água pode levar custos mais elevados para as tarifas dos consumidores ao aumentar os custos de operação pelo maior despacho de termoelétricas, e mesmo essas podem ser paralisadas ou ter seus custos variáveis elevados se houver crise hídrica. Evidentemente esses cenários das termoelétricas se referem a situações hipotéticas em crises hidrológicas nas bacias do Nordeste, o que indicará um maior cuidado na escolha e licenciamento dessas usinas.

Assim é mais do que relevante ressaltar a importância do nexo água-energia-produção de alimentos. A visão de maneira integrada do melhor uso dos recursos visa evitar futuros conflitos e a vulnerabilidade da segurança hídrica, energética e alimentar que são pilares para o desenvolvimento sustentável do país.

Enfim o nexo água-energia-produção de alimentos tem que ser melhor investigado, tanto do lado das disponibilidades quanto no de consumo. Hoje infelizmente não sabemos como detalhamento e precisão necessária de quanta água dispomos nas bacias e nem quanto se consome.
12 REFERÊNCIAS

AGEVAP - Usos múltiplos e revisão da proposta de revisão da metodologia de cobrança pelo uso da água – 2018

Escolhas/PSR- CUSTOS E BENEFÍCIOS DAS FONTES DE GERAÇÃO ELÉTRICA 2018
Fundação Getúlio Vargas – FGV/ANA Instrumentos Econômicos Aplicados À Gestão De Recursos Hídricos - Caminhos para sua adoção em situações de conflito pelo uso da água no Brasil- 2018

INEA-RJ Experiências para a gestão dos recursos hídricos Bacia Hidrográfica dos Rios Guandu, da Guarda e Guandu-Mirim -2012

IEMA Instituto de Energia e Meio Ambiente - Uso de água em termoelétricas – 2016

Kelman Jerson, Ramos Marilene - Custo, valor e preço da água utilizada na agricultura - REVISTA DE GESTÃO DE ÁGUA DA AMÉRICA LATINA – 2005

Secretaria dos Recursos Hídricos do Ceará Relatório 10 Consolidação da Etapa 1 Revisão Da Fórmula de Cálculo da Cobrança - Execução de Serviços de Análise da Integração dos Instrumentos de Gestão com foco na Outorga, Cobrança e Fiscalização dos Recursos Hídricos no Ceará – 2017

SUDERHSA Paraná- MANUAL DE OUTORGA 2006

13 ANEXO INSTRUMENTOS DE GESTÃO E DE OUTORGAS

13.1 Abordagens da gestão dos recursos hídricos

As primeiras abordagens para se possa realizar uma gestão dos recursos hídricos a partir de uma perspectiva econômica é reconhecê-la como um bem econômico, e para que a água seja utilizada de forma sustentável, os diferentes usuários devem reconhecer o valor de escassez do recurso (BACKEBERG, 1997).

A noção de que a água pode ser vista dessa forma é, inclusive, reconhecida nos princípios de Dublin: “Água possui valor econômico em todos os seus usos competitivos e deve ser reconhecida como um bem econômico”.

Os diversos aspectos que envolvem a definição do preço da água são particularmente importantes para analisar descompassos entre a demanda e oferta de água. Na maioria dos mercados por bens e serviços os bens escassos são alocados por meio do sistema de preços, que fornecem informações importantes sobre escassez e valor de uso, o que não é muito fácil para o caso da água.

O que pode explicar por que estabelecer os preços ou implantar mercados de (direitos de) água são tão difíceis? Uma explicação pode ser encontrada no fato de que os preços dos recursos hídricos são comumente determinados administrativamente, isto é, definidos por algum órgão regulador com base em contextos e considerações políticas, que normalmente não refletem nem levam em consideração o valor econômico dos recursos hídricos (OLMSTEAD e STAVINS, 2007).

Assim se os preços não refletirem a real disponibilidade da água não podem oferecer os sinais corretos para que os consumidores o utilizem de maneira eficiente e sustentável. É como num condomínio onde não existem medidores individuais com cobranças correspondentes, e assim todos pagam pela ineficiência de cada um.

Tal constatação, associada às limitações comuns de mecanismos de comando e controle, justifica o aumento do interesse nos instrumentos econômicos para lidar com eventos de escassez hídrica.

A interpretação da água como um bem econômico é apenas uma das bases que devem ser levadas em consideração para a boa gestão. Questões legais, institucionais, morais, culturais etc. também podem e devem ser contempladas.

Ainda que seja possível superar eventos de escassez por meio da construção de infraestrutura – como barragens, usinas de dessalinização ou poços mais profundos – essas soluções focadas no lado da oferta revelam-se mais custosas. Não se trabalha junto aos usuários no que tange ao valor do recurso. Se falta água a conclusão primeira que surge é investir em mais obras.

Adicionalmente, a expansão da oferta de água possui cada vez menos valor se é logo superada por uma demanda constantemente crescente (ZETLAND, 2014). Assim, as crescentes pressões sobre a água têm
levado diversas regiões a buscar diferentes opções e mecanismos para aumentar a eficiência no uso da água (JOHANSSON, TSUR, et al., 2002). Entre essas opções é possível destacar o uso de instrumentos econômicos (IEs).

Os problemas acerca da alocação de água podem ser encarados como de ordem econômica. Um olhar econômico pode ajudar, por exemplo, na compreensão de que eventos de escassez simplesmente refletem o fato de que a quantidade demandada supera aquela ofertada aos preços correntes (HORBULYK e ADAMOWICZ, 1997).

As políticas públicas para gestão dos recursos naturais costumam adotar instrumentos econômicos como forma de regular a demanda por recursos hídricos. Esses instrumentos econômicos (IEs) podem ser divididos em dois tipos de abordagens: Comando-controle (C&C), e mecanismos baseados em mercados ou incentivos.

A gestão dos recursos naturais, como ocorre no Brasil, geralmente conta com políticas públicas calcadas em sistemas administrativos de controle centralizados em órgãos governamentais - fortemente baseados em instrumentos legais, tais como: regulamentos, multas e penalidades – são aqueles classificados como C&C.

Para que esse sistema opere bem deve haver aplicação de muitos recursos em monitoramento, fiscalização e combate à corrupção. Um aspecto muito negativo é a sua excessiva centralização, o que se reflete nas muitas dificuldades na sua aplicação pelos seguintes motivos principais:

- A gestão da água se dá na a bacia hidrográfica em função da sua abrangência geográfica por ser evidentemente mais lógico, a qual nem sempre é compatível com limites administrativos territoriais (município, estado ou país);
- Órgãos ambientais estão subordinados, na maioria das vezes, a instâncias de governo que são também responsáveis pelas atividades de fomento. As atividades de controle ambiental e de incentivo à atividade econômica comumente no Brasil não são compatíveis, não são articuladas;
- Oferecem pouca flexibilidade aos indivíduos/empresas para responder à regulação;
- Requerem a adesão a padrões específicos, como padrões tecnológicos ou de desempenho. Por exemplo, determinam a instalação de equipamento específico de controle de poluição;
- Grandes atrasos no processo regulatório causado por sobrecargas no sistema de licenciamento e aprovação que atrasam investimentos, tornando-se um fardo ao desenvolvimento;
- Limitada capacidade de implementação, por falta de pessoal técnico, sistemas de monitoramento etc.;
Restrições financeiras do sistema de gestão, que não contam com fontes independentes e adequadas de financiamento.

Nos EUA verificou-se na prática que esse sistema acabou se tornando muito formal, burocrático, complexo e conflituoso, gerando pouca eficiência, e exigiendo reformulações dos procedimentos.

Uma alternativa diferenciada são as políticas de gestão que se baseiam em instrumentos econômicos – IEs. Esses instrumentos fazem uso de incentivos para induzir usuários a adotar níveis de consumo e de contaminação compatíveis com o objetivo estabelecido para o meio ambiente.

A aplicação dos IE’s na gestão de recursos hídricos tem como principal objetivo a internalização pelos usuários das externalidades negativas geradas pelos seus respectivos usos – vazões captadas e/ou consumidas e cargas poluentes lançadas.

Os sistemas baseados em mecanismos de mercados ou incentivos (IEs) mostram-se mais adequados pelos seguintes motivos principais:

- Fornecem maior flexibilidade pois as empresas respondendo à regulação incentivam a busca constante por novas soluções;
- Fornecem sinal de preços para os indivíduos/empresas e regulados em geral;
- Exploram melhor a capacidade dos mercados de agregar as informações; e
- Incluem instrumentos baseados em preços (tributos e subsídios) e baseados em quantidade (sistemas de permissões comercializáveis).

São especialmente adequados quando as respostas podem variar entre diferentes atores regulados e onde há assimetria de informações, de forma que o regulador não possui conhecimento sobre os custos (de cumprimento) das empresas.

A escolha de uma abordagem depende também das características e hábitos de cada região. Alguns fatores são relevantes para que agentes privados alterem seus comportamentos para conservar a água, tais como:

- O estágio de desenvolvimento de uma economia de mercado, perspectivas históricas e experiências com mecanismos de comando e controle;
- As capacidades organizacionais dos usuários de água e agências governamentais;
- As capacidades técnicas e a imparcialidade das agências governamentais para avaliar os ganhos ou perdas econômicas advindas das transferências de (direitos de) água; e
- A escala das transações e da realocação contempladas.
De fato, ainda que haja inúmeras virtudes no IEs podemos identificar muitos problemas para colocá-los em prática. Ou seja, a utilização de mecanismos baseados em mercados, conquanto promissora, ainda é restrita a poucos casos.

É importante clarificar alguns conceitos no que tange aos IEs. Um primeiro conceito importante é o conceito de valor econômico de um bem ou recurso, o qual pode ser dividido em três componentes:

• Valor de uso: que mostra o valor derivado do uso corrente direto do recurso;

• Valor de opção: que reflete o valor que as pessoas atribuem à existência do uso futuro do recurso, isto é, a disposição a pagar para ele seja preservado ao invés de consumido; e

• Valor de não uso: reflete a disposição das pessoas em pagar para que o recurso seja preservado ou melhorado simplesmente sem qualquer interesse de uso futuro.

A combinação desses componentes pode ser interpretada como a disposição total a pagar por um recurso, no caso de um comprador. Similarmente, para um produtor, suas ações serão ditadas por sua disposição a receber. Assim, o preço de um bem será um elemento entre as disposições a pagar do comprador e a receber do vendedor, que são fundamentais para discussões acerca de políticas que envolvem, direta ou indiretamente, a alocação de quaisquer recursos escassos, por exemplo água.

O conceito econômico de valor da água reside na disposição da sociedade em optar por um uso para o recurso em detrimento/sacrifício de outro e em agregar as disposições de cada indivíduo em fazer essas opções. Ou seja, é um trade-off. Esse conceito, por sua vez, está diretamente relacionado com o de custo de oportunidade, que é exatamente um indicativo do que deve ser sacrificado para que se possa obter algo. Esse valor, geralmente, não coincide com gastos monetários.

O sistema de mercado é extremamente resiliente no que diz respeito à sua capacidade de responder a desafios, uma vez que os preços oferecem sinais para o uso adequado dos recursos ao longo do tempo, apesar de não ser infalível e nem sempre levar a resultados sustentáveis. Quaisquer tentativas de resolver problemas ambientais que não levem as forças de mercado em consideração correm um maior risco de não serem bem-sucedidas (STAVINS, 1989).

Ao atribuir de forma direta o ônus dos custos (de oportunidade) ao usuário de um recurso escasso ou (de externalidades) ao poluidor, os IEs podem: corrigir problemas de externalidades; garantir que os agentes procurem melhorar suas práticas e que sejam recompensados com maiores benefícios; estimular o desenvolvimento de novas tecnologias; reduzir gastos de cumprimento de regulações (STRATOS, 2003 apud CANTIN, SHRUBSOLE e AÏT-OUYAHIA, 2005).

Normalmente, políticas ambientais buscam alcançar algum tipo de equilíbrio entre a efetividade ambiental e a eficiência econômica. Para tanto, alguns instrumentos econômicos são comumente contem-
plados: i) tributos e encargos sobre poluição ou sobre produtos; ii) programas de permissões commercializáveis; iii) subsídios e fundos ambientais; e iv) sistemas de depósito e retorno e títulos ambientais (O’CONNOR, 1998). Os dois primeiros são mais utilizados.

13.1.1 Tributos

Impor tributos é uma maneira para corrigir falhas de mercado e promover um equilíbrio competitivo de tal forma que leve a uma alocação eficiente. Assim deveria ser cobrado aos indivíduos que são responsáveis pela imposição de gastos externos sobre terceiros. Entretanto, definir a alíquota apropriada (para atingir determinado objetivo) é extremamente difícil na prática. Um imposto correto deve ter exatamente a mesma proporção do custo social gerado e como se pode definir isso?

Outro tipo de tributo, especificamente destinado à conservação de recursos exauríveis, é o “severance tax”, cuja alíquota incide sobre cada unidade do recurso retirado do me ambiente, por exemplo, cada tonelada de cobre retirada de uma mina. Mas ele é também difícil de definir e pode ser um limitador ao desenvolvimento como qualquer imposto.

Os tributos que incidem sobre produtos são uma maneira de tentar influenciar o comportamento dos agentes ao tornar mais custosos aqueles produtos que são causadores de impactos ambientais (HANLEY, SHOGREN e WHITE, 2007b). Eles focam no ciclo de vida de para promover a conservação, mas também essa forma esbarra na definição de alíquotas. Em ambos os casos, a efetividade depende das elasticidades da demanda e da oferta por determinado bem ou recurso.

13.1.2 Sistemas comercializáveis ou mercados de água

Os sistemas de permissões comercializáveis são uma forma de racionalizar os efeitos ambientais de forma mais simples, por exemplo no caso de emissões como o mercado de crédito de carbono:

- Primeiro se determina o nível total de emissões ou concentração de emissões em uma região específica;

- E segundo se pode permitir que volume igual às emissões assim já estabelecidas serão distribuídas entre os produtores da região; e

- Após essa etapa as permissões podem ser transacionadas entre os produtores. Assim aqueles que tiverem níveis de emissão inferiores à sua alocação podem vender seu excedente para aqueles que tiverem emissões superiores à sua alocação.

Dessa forma o sistema de permissões comercializáveis possibilita a transferência do processo de tomada de decisão dos reguladores para os produtores, no que diz respeito às estratégias para controle de poluição e/ou impacto ambiental. Isto, o bem de todos depende de compartilhar as quantidades e responsabilidades para a exploração do recurso natural seja explorada de forma sustentada, como se fosse um condomínio de moradores de uma edificação.
Quando a água é escassa numa bacia ou região, e as necessidades mais básicas e o abastecimento humano foram garantidos, a água pode ser considerada como um bem econômico. Já quando a água é abundante, ela deixa de ser um bem econômico (LIU, SAVENIJE e XU, 2003). Esse é o caso da maior parte das bacias e regiões do Brasil, onde a água é um recurso não é um fator limitante.

Essa é uma grande dificuldade de instituições no Brasil. A experiência tem mostrado que órgãos construídos em um momento ou região em que água é abundante não são adequadas para lidar com eventos de escassez (ZETLAND, 2014) e podem comprometer o desenho dos direitos de propriedade/uso e demais instrumentos para sua gestão de maneira eficiente e sustentável, afetando negativamente os incentivos para os usuários.

Na maioria dos países, os direitos (legais) que governam a posse ou uso da água são baseados em alguma das três seguintes classes:

- Direitos ripários ou ribeirinhos de uso dos recursos hídricos: ligam a propriedade da água à propriedade de terra adjacente;
- Alocação prévia: direitos de uso determinados pelo uso histórico; e
- Alocação pública: as prioridades de uso são diretamente assinaladas pelo governo (JOHANSSON, TSUR, et al., 2002).

Os direitos ripários amarram a propriedade da água à propriedade da terra, essa, por sua vez, é normalmente privada. Por extensão, nesses casos a água é, então, tratada como propriedade privada. É possível notar que na prática os direitos ripários acabam por configurar um sistema de propriedade comum (ainda que limitado aos proprietários adjacentes).

Já no que diz respeito à alocação pública, o estado define as prioridades de uso e quantidades que diferentes usuários podem utilizar/extrair do recurso. Ainda que o poder público possa alocar direitos de uso que tornem parcelas de determinado curso d’água, para todos os efeitos, em propriedades privadas ou comuns, em última instância o recurso é de propriedade estatal.

Por outro lado, nenhuma das classes acima é aplicável em uma propriedade de livre acesso, uma vez que todos possuem o direito de usar, extrair e modificar o recurso e não podem ser impedidos de fazê-lo ainda que suas ações possam prejudicar outras pessoas.

De fato, uma forma de alocação pública são os direitos ripários regulados, para os quais o órgão governamental responsável requer que nenhuma água seja extraída de uma fonte de água sem que seja concedida licença que estipula as condições e o período em que tal extração pode ocorrer. Assim, tal órgão define a priori se o uso proposto da água é razoável tanto em termos sociais mais amplos, quanto com relação aos impactos sobre os outros usos permitidos para aquela fonte (DELLAPENNA, 2004).
As vantagens desse sistema estão associadas à garantia de que, ao menos para o período da licença, o uso daquele volume de água não poderá ser contestado e, consequentemente, permite a realização daqueles investimentos com prazo de maturação inferior ao da licença (DELLAPENNA, 2004).

Contudo, limitações de conhecimento por parte do órgão regulador e incertezas associadas ao ciclo hidrológico, bem como os problemas associados à alocação de um recurso escasso com base em critérios políticos, fazem com que a disponibilidade e qualidade do recurso não sejam garantidas. E ainda a alocação com base em critérios políticos pode criar ganhos excepcionais para indivíduos que pagaram pouco ou nada para receber direitos extremamente valiosos (ZETLAND, 2014).

Por fim, a disponibilidade de água costuma ser difícil de prever, quando não aleatória e, assim, a definição das quantidades a que cada usuário tem direito - seja em um sistema de alocação prévia ou pública - é tarefa extremamente complicada (ALMEIDA, 2005). É importante, portanto, que as instituições que governem a alocação de direitos de água sejam flexíveis para se adequar a novas realidades, inclusive eventos extremos de escassez.

13.2 Casos e cenários futuros

Na Austrália e no oeste dos Estados Unidos as outorgas podem ser comercializadas no mercado de águas. Graças a isso, o PIB agrícola da Austrália não diminuiu durante a seca dos primeiros anos deste século, que perdurou por vários anos. Todavia, a nossa Lei das Águas não admite a comercialização de outorgas. Essa vedação decorre em parte da discussão que contrapõe os conceitos de água como um bem com valor econômico e água como um direito básico do ser humano. A persistência dessa estéril discussão não apenas impediu a inclusão da comercialização de outorgas na Lei como tem dificultado a aplicação da cobrança pelo uso dos recursos hídricos.

Na Austrália foi percorrido um longo caminho até se estabelecer um mercado de água, que se iniciou na bacia do Murray-Darling – MDB, conforme mostrado a seguir:
<table>
<thead>
<tr>
<th>Marco</th>
<th>Ano</th>
<th>Principais mudanças</th>
</tr>
</thead>
<tbody>
<tr>
<td>COAG Water Reform Framework</td>
<td>1984</td>
<td>Discorre sobre a necessidade de tornar os direitos de propriedade mais claros, alocar recursos hídricos para fins ambientais, adotar arranjos para facilitar o funcionamento de mercados de água, entre outras providências.</td>
</tr>
<tr>
<td>National Water Initiative (NWI)</td>
<td>2004</td>
<td>Compromisso entre governos federal e estaduais para aumentar a eficiência no uso dos recursos hídricos, preparar planos compreensivos para gestão da água, alcançar níveis sustentáveis de uso, expandir os mercados de água, entre outras providências. Reavaliações ocorrem a cada dois anos.</td>
</tr>
<tr>
<td>Water Act</td>
<td>2007</td>
<td>Estabelece a Murray-Darling Basin Authority, responsável pelo Plano de Bacia.</td>
</tr>
<tr>
<td>Murray-Darling Basin Plan</td>
<td>2012</td>
<td>Determina a quantidade de água que pode ser extraída para usos consuntivos e contém planos específicos para o uso eficaz da água para fins ambientais e para o funcionamento de forma eficiente e justa dos mercados de água, entre outros objetivos. Em vigor até 2019.</td>
</tr>
</tbody>
</table>

Figura 35 - Mercado de água australiano

A implantação do mercado permitiu que se pudesse vencer várias crises hídricas, sem que houvesse grandes perdas da produção geral da bacia por meio das trocas de alocação de água. Por exemplo produtores de arroz cediam a sua outorga para produtores de vinho que possuíam maior valor agregado para sua produção, como se pode verificar pelo valor obtido pela produção mesmo em anos de escassez de água (Figura 36).

Figura 36 - Valor da produção e usos da água na bacia MDB – Austrália

- O cumprimento de acordos internacionais relevantes por meio da gestão integrada;
- O estabelecimento de um framework para gestão adaptativa sustentável e de longo prazo para os recursos hídricos da bacia;
- A otimização dos resultados sociais, econômicos e ambientais oriundos dos recursos da bacia, face ao interesse nacional; e
- O aprimoramento da segurança hídrica para todos os usos.

Nesse contexto, o estabelecimento de um limite de extração considerado sustentável, tanto para águas de superfície como aquíferos, foi um dos principais elementos do plano, que também prevê mecanismos para revisão e ajuste de tais limites.

Cabe ressaltar que no Brasil já existe em tramitação no Congresso uma proposição de lei para a implantação de um mercado de água (Figura 37).

![SENADO FEDERAL
PROJETO DE LEI DO SENADO
Nº 495, DE 2017
Alterna a Lei nº 9.433, de 8 de janeiro de 1997, para introduzir os mercados de água como instrumento destinado a promover alocação mais eficiente dos recursos hídricos.](image)

Figura 37 - Projeto de lei para implantação de um mercado de água

13.3 Cobrança e outorga de água

O modelo brasileiro de gestão de recursos hídricos tem como base a estratégia francesa de gestão das águas. A França (em 1964) optou por desviar da abordagem territorial tradicionalmente utilizada e inseriu um novo contexto de divisão geográfica fundamentada na Bacia Hidrográfica.

No caso do Brasil a estruturação da cobrança como instrumento da Gestão de Recursos Hídricos remete à década de 90, quando, conforme destacado por ANA (2014), iniciou-se uma tendência mundial de associar instrumentos econômicos aos tradicionais instrumentos de comando e controle.

O cálculo da cobrança no Brasil é similar para as bacias hidrográficas onde o instrumento foi implementado. Na fórmula são consideradas três variáveis referentes a volume (captado, consumido e lançado), Preço Público Unitário (PPU) e coeficientes que representam fatores quali-quantitativos. ANA (2016) define as parcelas da seguinte maneira:

- A base de cálculo inclui os três tipos de uso: captação, consumo e lançamento. O volume anual de água captada é quantificado pelo volume anual outorgado ou por meio de uma soma ponderada do volume anual outorgado e do volume anual medido; a água consumida é calculada como a diferença entre o volume captado e o lançado; o lançamento tem em conta a carga poluente do efluente de águas residuais lançadas;

- O preço unitário se baseia em programas de investimento contemplados nos planos da bacia hidrográfica e nos custos operacionais das agências de água;

- Os coeficientes levam em consideração metas específicas e ajustes na equação de cálculo. Incluem, por exemplo: enquadramento dos corpos hídricos em classes, segundo os usos preponderantes da água; volume de água efetivamente utilizado em relação ao volume outorgado; índice de perdas de água no setor de saneamento; e capacidade de pagamento do setor agropecuário.

A cobrança pelo uso de recursos hídricos é, em última análise, uma compensação financeira feita pelos agentes de produção cujas externalidades não foram internalizadas em seu custo de produção.

A ANA, em parceria com a Organização de Cooperação e Desenvolvimento Econômico (OCDE) e mais de 150 entidades interessadas, propiciou a construção e publicação, em 2017, do relatório “Cobrança pelo uso de Recursos Hídricos no Brasil: caminhos a seguir”. O relatório afirma que a cobrança deveria incentivar o setor industrial a internalizar o custo da poluição, uma vez que o nível atual dos valores da cobrança pelo uso de recursos hídricos no Brasil está longe de corrigir as externalidades.

A ineficiência do atual regime de cobrança é demonstrada pelo fato de que, devido à poluição não tratada, o gasto de tratamento da água extraída (em rios) para uso industrial é maior que a cobrança imposta; em certos casos, superior por duas ordens de grandeza (OCDE, 2017).
A forma e o alcance da cobrança nos diversos sistemas de gestão são bastante diferenciados. Em países como Alemanha e Estados Unidos, que tradicionalmente possuem uma forte capacidade institucional de fazer cumprir a legislação, a cobrança aporta um incentivo financeiro suplementar. Na França, a cobrança pelo uso da água proporciona parte substancial dos recursos investidos pelas agências de bacia na gestão de recursos hídricos e, principalmente, no controle da poluição. A Inglaterra e o País de Gales utilizam a cobrança apenas para cobrir os custos administrativos do sistema de gestão e do monitoramento dos recursos hídricos.

No Brasil a utilização da água nos mais variados processos produtivos está atrelada à valoração por meio de um fator de ponderação monetário, denominado Preço Público. A denominação utilizada para este fator gera algumas implicações. Entre elas, encontra-se a sua dissociação dos usuais mecanismos utilizados pelas políticas públicas, não sendo considerado um imposto.

Os valores e mecanismos associados a esse fator, conforme citado por ANA (2014), são negociados a partir de debate público no âmbito dos Comitês de Bacia Hidrográfica e não por meio de decisões isoladas de instâncias governamentais, sejam elas do executivo ou do legislativo. Essa forma de precificação tem origem no Artigo nº 37 da Lei Federal nº 9.433/1997, no qual é definido que cabe aos Comitês de Bacia estabelecer os mecanismos de cobrança pelo uso de recursos hídricos e sugerir os valores a serem cobrados.

Em âmbito nacional, o valor do Preço Público Unitário (PPU), considerando captação e lançamento, varia entre R$ 0,008/m³ a R$ 2,38/m³. Entre os fatores utilizados para diferenciação entre os Preços Públicos destacam-se: o volume considerado ser relativo à captação, consumo ou lançamento; o tipo de uso (usualmente aplicam-se valores menores a determinadas atividades como, por exemplo, a irrigação e pecuária); entre outros.

Um caso diferencial de cobrança ocorre nas Bacias Hidrográficas localizadas no Estado do Ceará, em que há uma diferenciação do PPU de acordo com o tipo de adução. Para os usuários que utilizam sua captação por intermédio de estrutura hídrica com adução da Companhia de Gestão de Recursos Hídricos (COGERH), o valor do PPU pode chegar até R$ 2,383/m³, enquanto a adução com captação em mananciais (açudes, rios, lagos e aquíferos) sem adução da COGERH varia entre R$ 0,0156/m³ e R$ 0,158/m³. Os valores de PPU utilizados nos Comitês de Bacia encontram-se entre R$ 0,008 a R$ 2,38, como já apresentado.

No Estado do Rio de Janeiro, a cobrança pelo uso da água, iniciada após a aprovação da Lei Estadual nº 4.247/2003, estabeleceu um valor inicial de cobrança que variava entre R$ 0,0005/m³ e R$ 0,02/m³, dependendo do tipo de uso. A referida lei estabeleceu em seu Artigo 22 que os critérios e valores de cobrança estabelecidos possuíam caráter provisório e válidos até que os Comitês de Bacia estabelecessem seus próprios mecanismos. Entretanto, após doze anos de publicação da Lei, nenhum Comitê do Estado do Rio de Janeiro havia alterado esses valores.
No ano de 2015, o Comitê Guandu aprovou a Resolução nº 118/2015, que altera o valor do Preço Público Unitário (PPU) de R$ 0,02 para R$ 0,04 para todos os tipos de uso. A alteração do valor entrou em vigor em janeiro de 2017.

A dificuldade em estabelecer atualizações no PPU foi debatida em âmbito nacional por meio da Câmara Técnica de Cobrança pelo Uso de Recursos Hídricos (CTCOB), integrante do Conselho Nacional de Recursos Hídricos (CNRH). Em abril de 2017, por meio da Comunicação Interna (CI) nº 81/2017/SAS (documento nº 00000.023164/2017-61) o CTCOB levou à Procuradoria Federal junto à Agência Nacional de Águas (PF/ANA) os seguintes questionamentos:

- A possibilidade de a ANA propor um normativo ao CNRH indicando critérios para recomposição e conservação dos valores reais do preço unitário; e
- Se, do ponto de vista da PF/ANA, o CNRH tem competência para editar norma visando a referida recomposição.

Recomendou-se que as metodologias determinadas pelos demais Comitês de Bacia Hidrográfica também adotem correção vinculada ao IPCA. Destaca-se que a implantação dessa correção monetária deve ser, preferencialmente, acompanhada de estudo e implantação de mecanismos que permitam uma maior eficiência de desembolso, incluindo o estudo da possibilidade de financiamento de ações de melhorias em processos que alterem positivamente a qualidade e quantidade de água nas Bacias.

Com base nessas premissas, o estudo realizado buscou refletir, em cada metodologia apresentada, os fatores responsáveis por alterar a qualidade e quantidade de água de um corpo hídrico, considerando-se a variabilidade de processos produtivos e as diferenças relativas aos tipos de captação e lançamento.

Cada metodologia proposta possui fatores “K” associados que foram definidos e distribuídos conside-rando-se as principais condições ambientais envolvidas em cada processo. Destaca-se que o Grupo de Estudos da AGEVAP sobre a Cobrança (GEAC) se restringiu a apresentar classes entre as quais se acredita, com base em fundamentação técnica, que os fatores devem ser distribuídos, sem prever de forma assertiva o valor que deve ser adotado para cada um destes.

A não proposição destes valores justifica-se por haver consideração de que a cobrança pelo uso da água carece de análise multidisciplinar das esferas ambiental, social, econômica e política.

No que diz respeito à análise ambiental, deveriam ser considerados os principais fatores intervenientes. No que tange a esfera econômica, a capacidade de pagamento de usuários, disposição a pagar pelo uso da água, manutenção da competitividade de mercado, entre outros, cabendo assim, a contratação de um serviço específico para essa finalidade. Como se pode ver é muito complexa a avaliação e a definição dos custos e da cobrança pelo uso da água.